28 resultados para 694
em Indian Institute of Science - Bangalore - Índia
Resumo:
We propose a unified model to explain Quasi-Periodic Oscillation (QPO), particularly of high frequency, observed from black hole and neutron star systems globally. We consider accreting systems to be damped harmonic oscillators exhibiting epicyclic oscillations with higher-order nonlinear resonance to explain QPO. The resonance is expected to be driven by the disturbance from the compact object at its spin frequency. The model explains various properties parallelly for both types of the compact object. It describes QPOs successfully for ten different compact sources. Based on this, we predict the spin frequency of the neutron star Sco X-1 and specific angular momentum of black holes GRO J1655–40, XTE J1550–564, H1743–322, and GRS 1915+105.
Resumo:
A novel CMOS Schmitt trigger using only four MOS transistors is discussed. This circuit, which works on the principle of load-coupled regenerative feedback, can be implemented using conventional CMOS technology with only one extra fabrication step. It can be implemented even more easily in CMOS/SOS (silicon-on-sapphire) integrated circuits. The hysteresis of this Schmitt trigger can be controlled by a proper choice of the transistor geometries.
Resumo:
Knowledge of the generation of H202 in cellular oxidations has existed for many years. It has been assumed that H202 is tOxiC tO cells and the presence of catalase is indicative of a detoxication mechanism. Other radicals of oxygen were recently recognized to be more potent destructive agents of biological material than H202. Also catalase and other peroxidases utilize H202 in some cellular oxidation processes leading to several important metabolites. Thus, the generation of H202 in cellular processes seems to be purposeful and H202 can not be dismissed as a mere undesirable byproduct. Biological formation of H202 is not limited to the previously known flavoproteins and some copper enzymes, but other redox systems, particularly heme and non-heme iron proteins, are now found to undergo auto-oxidation yielding H202. The capacity for generation of H202 is now found to be widespread in a variety of organisms and in the organdies of the cells. The reduction of oxygen to H20 by mitochondrial cytochrome oxidase being the predominant oxygen-utilizing reaction had over-shadowed the importance of the quantitatively minor pathways. Under aerobic conditions generation of H202 by a Variety of biomembranes has now been found to be a physiological event interlinked with phenomena such as phagocytosis, transport processes and thermogenesis in some as yet unidentified way. The underlying mechanisms of these processes seem to involve generation and utilization of H202 in mitochondria, microsomes, peroxisomes or plasma membranes. This review gives an account of the potential of biomembranes to generate H202 and its implication in the cellular processes.
Resumo:
C15HIoN404, monoclinic, P2~/c, a = 10.694(8), b = 11.743 (8), c - 12.658 (8) A, fl = 113.10 (7) °, V = 1462.1 A 3, Z = 4, O m = 1 "38, O c = 1.408 g cm -3, t,t(MoKa, ~, = 0.7107 ]~) = 0.99 cm -i, F(000) = 640. The structure was solved by direct methods and refined to an R value of 0.054 using 1398 intensity measurements. The relative magnitudes of interaction of the substituents and the extent to which a ring can accommodate interactions with substituents are discussed.
Resumo:
C15HIoN404, monoclinic, P2~/c, a = 10.694(8), b = 11.743 (8), c - 12.658 (8) A, fl = 113.10 (7) °, V = 1462.1 A 3, Z = 4, O m = 1 "38, O c = 1.408 g cm -3, t,t(MoKa, ~, = 0.7107 ]~) = 0.99 cm -i, F(000) = 640. The structure was solved by direct methods and refined to an R value of 0.054 using 1398 intensity measurements. The relative magnitudes of interaction of the substituents and the extent to which a ring can accommodate interactions with substituents are discussed.
Resumo:
Sodium ethylselenolates with functional groups X (where X = -OH, -COOH, -COOMe and -COOEt) at beta-carbon were prepared in situ by reductive cleavage of corresponding diselenide with NaBH4 either in methanol or aqueous ammonia. Treatment of these selenolates with [M2Cl2(mu-Cl)(2)(PR'(3))(2)] (M = Pd or Pt; PR'(3) = PMePh2, PnPr(3)) in different stoichiometry yielded various bi- and tri-nuclear complexes. The homoleptic hexanuclear complexes [Pd(mu-SeCH2CH2X)(2)](6) (X = OH, COOH, COOEt), were obtained by reacting Na2PdCl4 with NaSeCH2CH2X. All these complexes have been fully characterized. Molecular structures of ethylselenolates containing hydroxyl and carboxylic acid groups revealed solid state associated structures through inter-molecular hydrogen bond interactions. Trinuclear complex, [Pd3Cl2(mu-SeCH2CH2COOH)(4)(PnPr(3))(2)] (3a), was disposed in a boat form unlike chair conformation observed for the corresponding methylester complex. The effect of beta-functionality in ethylselenolate ligands towards reactivity, structures and thermal properties of palladium and platinum complexes has been extensively Studied.
Resumo:
The characterization and properties of trans-(X)-[RuX2(CO)(2)(alpha/beta-NaiPy)] (1, 2) (alpha-NaiPy (a), beta-NaiPy (b); X = Cl (1), I (2)) are described in this work. The structures are confirmed by single crystal X-ray diffraction studies. Reaction of these compounds with Me3NO in MeCN has isolated monocarbonyl trans-(X)-RuX2(CO)(MeCN)(alpha/beta-NaiPy)] (3, 4). The complexes show intense emission properties. Quantum yields of 1 and 2 (phi= 0.02-0.08) are higher than 3 and 4 (phi = 0.006-0.015). Voltammogram shows higher Ru(III)/Ru(II) (1.3-1.5 V) potential of 1 and 2 than that of 3 and 4 (0.8-0.9 V) that may be due to coordination of two pi-acidic CO groups in former. The electronic spectra and redox properties of the complexes are compared with the results obtained by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) using polarizable continuum model (CPCM).
Resumo:
Security in a mobile communication environment is always a matter for concern, even after deploying many security techniques at device, network, and application levels. The end-to-end security for mobile applications can be made robust by developing dynamic schemes at application level which makes use of the existing security techniques varying in terms of space, time, and attacks complexities. In this paper we present a security techniques selection scheme for mobile transactions, called the Transactions-Based Security Scheme (TBSS). The TBSS uses intelligence to study, and analyzes the security implications of transactions under execution based on certain criterion such as user behaviors, transaction sensitivity levels, and credibility factors computed over the previous transactions by the users, network vulnerability, and device characteristics. The TBSS identifies a suitable level of security techniques from the repository, which consists of symmetric, and asymmetric types of security algorithms arranged in three complexity levels, covering various encryption/decryption techniques, digital signature schemes, andhashing techniques. From this identified level, one of the techniques is deployed randomly. The results shows that, there is a considerable reduction in security cost compared to static schemes, which employ pre-fixed security techniques to secure the transactions data.
Resumo:
Catalytic cyclopropanation reactions of olefins with ethyl diazoacetate were carried out using copper(I) diphosphinoamine (PPh2)(2)N(R) (R = Pr-i, H, Ph and -CH2-C6H4-CH=CH2) complexes at 40 degrees C in chloroform. High yields of the cyclopropanes were obtained in all cases. The rate of the reaction was influenced by the nuclearity of the complex and the binding mode of the ligand which was either bridging or chelating. Comparison of isostructural complexes shows that the rate follows the order R = Pr-i > H > Ph, where R is the substituent on the N. However, cyclopropane formation versus dimerization of the carbene, and trans to cis ratios of cyclopropane was similar in all cases. The nearly identical selectivity for different products formed was indicative of a common catalytic intermediate. A labile "copper-olefin" complex which does not involve the phosphine or the counterion is the most likely candidate. The differences in the reaction rates for different complexes are attributed to differences in the concentration of the catalytically active species which are in equilibrium with the catalytically inactive copper-phosphinoamine complex. To test the hypothesis a diphosphinoamine polymer complexed to copper(I) was used as a heterogeneous catalyst. Leaching of copper(I) and deactivation of the catalyst confirmed the proposed mechanism. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
The ligand bis(diphenylphosphino) isopropylamine (dppipa) has been shown to be a versatile ligand sporting different coordination modes and geometries dictated by copper(I). Most of the molecular structures were confirmed by X-ray crystallography. It is found in a chelating mode, in a monomeric complex when the ligand to copper ratio is 2:1. A tetrameric complex is formed when low ratios of ligand to metal (1: 2) were used. But with increasing ratios of ligand to metal (1: 1 and 2: 1), a trimer or a dimer was obtained depending on the crystallization conditions. Variable temperature P-31{H-1} NMR spectra of these complexes in solution showed that the Cu-P bond was labile and the highly strained 4-membered structure chelate found in the solid state readily converted to a bridged structures. On the other hand, complexes with the ligand in a bridging mode in the solid state did not form chelated structures in solution. The effect of adding tetra-alkylammonium salts to solutions of various complexes of dppipa were probed by P-31{H-1} NMR and revealed the effect of counter ions on the stability of complexes in solution. (C) 2008 Elsevier B.V. All rights reserved.
Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae)
Resumo:
The two recently proposed taxonomies of the langurs and leaf monkeys (Subfamily Colobinae) provide different implications to our understanding of the evolution of Nilgiri and purple-faced langurs. Groves (2001) [Groves, C.P., 2001. Primate Taxonomy. Smithsonian Institute Press, Washington], placed Nilgiri and purple-faced langurs in the genus Trachypithecus, thereby suggesting disjunct distribution of the genus Trachypithecus. [Brandon-Jones, D., Eudey, A.A., Geissmann, T., Groves, C.P., Melnick, D.J., Morales, J.C., Shekelle, M., Stewart, C.-B., 2003. Asian primate classification. Int. J. Primatol. 25, 97–162] placed these langurs in the genus Semnopithecus, which suggests convergence of morphological characters in Nilgiri and purple-faced langurs with Trachypithecus. To test these scenarios, we sequenced and analyzed the mitochondrial cytochrome b gene and two nuclear DNA-encoded genes, lysozyme and protamine P1, from a variety of colobine species. All three markers support the clustering of Nilgiri and purple-faced langurs with Hanuman langur (Semnopithecus), while leaf monkeys of Southeast Asian (Trachypithecus) form a distinct clade. The phylogenetic position of capped and golden leaf monkeys is still unresolved. It is likely that this species group might have evolved due to past hybridization between Semnopithecus and Trachypithecus clades.
Resumo:
A .beta.-glucosidase and an endocellulase were purified from the culture filtrates of a thermophilic cellulolytic fungus Humicola insolens. Both the preparations were homogeneous by PAGE, ultracentrifugation and gel filtration (Mr 45,000). Ouchterlony immunodiffusion showed complete cross reactivity between the antibodies and the two enzyme antigens, indicating the presence of a common epitope on the two enzyme proteins. The two enzymes, however, differ in their amino acid composition and their substrate specificity. .beta.-Glucosidase acts on p-nitrophenyl .beta.-D-glucopyranoside and hydrolyses cellulose to release mainly glucose and small amounts of cellobiose from the non-reducing end. On the other hand, endocellulase hydrolyses cellulose to release cellopentaose, cellotetraose, cellotriose along with cellobiose and glucose and also hydrolyses larch wood xylan.
Resumo:
CI3H17N5Os.C2H6OS, Mr=401.23, orthorhombic,P21212 p grown from Me2SO, a = 10.749 (2),b = 13.219 (2), c = 14.056 (2) A, V= 1997-23 A 3, Z =4, D_=1.40, D x=l.335Mgm -3, 2(CuKa)= 1.5418/~', g = 1.694 mm -~, F(000) = 848.00, T=293K, R =0.0538, wR =0.0634 for 2105 unique reflections with F > 3o(F). The asymmetric unit contains one nucleoside molecule with a disordered solvent Me2S_O molecule. The geometry about the C(4')-C(5') bond is gauche-gauche. The guanosine base is in the anti conformation with the furanose ring having C(3')-exo (E 3) puckering. The bases do not show any stacking in contrast to other guanosine-containing structures. The crystal structure is stabilized by N--H...N and N--H...O hydrogen bonding.
Resumo:
We propose a physical mechanism to explain the origin of the intense burst of massive-star formation seen in colliding/merging, gas-rich, field spiral galaxies. We explicitly take account of the different parameters for the two main mass components, H-2 and H I, of the interstellar medium within a galaxy and follow their consequent different evolution during a collision between two galaxies. We also note that, in a typical spiral galaxy-like our galaxy, the Giant Molecular Clouds (GMCs) are in a near-virial equilibrium and form the current sites of massive-star formation, but have a low star formation rate. We show that this star formation rate is increased following a collision between galaxies. During a typical collision between two field spiral galaxies, the H I clouds from the two galaxies undergo collisions at a relative velocity of approximately 300 km s-1. However, the GMCs, with their smaller volume filling factor, do not collide. The collisions among the H I clouds from the two galaxies lead to the formation of a hot, ionized, high-pressure remnant gas. The over-pressure due to this hot gas causes a radiative shock compression of the outer layers of a preexisting GMC in the overlapping wedge region. This makes these layers gravitationally unstable, thus triggering a burst of massive-star formation in the initially barely stable GMCs.The resulting value of the typical IR luminosity from the young, massive stars from a pair of colliding galaxies is estimated to be approximately 2 x 10(11) L., in agreement with the observed values. In our model, the massive-star formation occurs in situ in the overlapping regions of a pair of colliding galaxies. We can thus explain the origin of enhanced star formation over an extended, central area approximately several kiloparsecs in size, as seen in typical colliding galaxies, and also the origin of starbursts in extranuclear regions of disk overlap as seen in Arp 299 (NGC 3690/IC 694) and in Arp 244 (NGC 4038/39). Whether the IR emission from the central region or that from the surrounding extranuclear galactic disk dominates depends on the geometry and the epoch of the collision and on the initial radial gas distribution in the two galaxies. In general, the central starburst would be stronger than that in the disks, due to the higher preexisting gas densities in the central region. The burst of star formation is expected to last over a galactic gas disk crossing time approximately 4 x 10(7) yr. We can also explain the simultaneous existence of nearly normal CO galaxy luminosities and shocked H-2 gas, as seen in colliding field galaxies.This is a minimal model, in that the only necessary condition for it to work is that there should be a sufficient overlap between the spatial gas distributions of the colliding galaxy pair.