5 resultados para 67-498

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of chemical mutation featuring the selective conversion of asparagine or glutamine to aspartic or glutamic acid, respectively, on the kinetics of refolding of reduced RNase has been studied. The monodeamidated derivatives of RNase A, viz. RNase Aa1a, Aa1b, and Aa1c having their deamidations in the region 67-74, were found to regain nearly their original enzymatic activity. However, a marked difference in the kinetics of refolding is seen, the order of regain of enzymic activity being RNase A greater than Aa1c congruent to Aa1a greater than Aa1b. The similarities in the distinct elution positions on Amberlite XE-64, gel electrophoretic mobilities, and u.v. spectra of reoxidized and native derivatives indicated that the native structures are formed. The slower rate of reappearance of enzymic activity in the case of the monodeamidated derivatives appears to result from altered interactions in the early stages of refolding. The roles of some amino acid residues of the 67-74 region in the pathway of refolding of RNase A are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermodynamic study of the Ti-O system at 1573 K has been conducted using a combination of thermogravimetric and emf techniques. The results indicate that the variation of oxygen potential with the nonstoichiometric parameter delta in stability domain of TiO2-delta with rutile structure can be represented by the relation, Delta mu o(2) = -6RT In delta - 711970(+/-1600) J/mol. The corresponding relation between non-stoichiometric parameter delta and partial pressure of oxygen across the whole stability range of TiO2-delta at 1573 K is delta proportional to P-O2(-1/6). It is therefore evident that the oxygen deficient behavior of nonstoichiometric TiO2-delta is dominated by the presence of doubly charged oxygen vacancies and free electrons. The high-precision measurements enabled the resolution of oxygen potential steps corresponding to the different Magneli phases (Ti-n O2n-1) up to n = 15. Beyond this value of n, the oxygen potential steps were too small to be resolved. Based on composition of the Magneli phase in equilibrium with TiO2-delta, the maximum value of n is estimated to be 28. The chemical potential of titanium was derived as a function of composition using the Gibbs-Duhem relation. Gibbs energies of formation of the Magneli phases were derived from the chemical potentials of oxygen and titanium. The values of -2441.8(+/-5.8) kJ/mol for Ti4O7 and -1775.4(+/-4.3) kJ/mol for Ti3O5 Obtained in this study refine values of -2436.2(+/-26.1) kJ/mol and-1771.3(+/-6.9) kJ/mol, respectively, given in the JANAF thermochemical tables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) and Ce(0.67)Fe(0.33)O(2-delta) have been synthesized by a new low temperature sonochemical method using diethylenetriamine as a complexing agent. Due to the substitution of Fe and Pt ions in CeO(2), lattice oxygen is activated in Ce(0.67)Fe(0.33)O(2-delta) and Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta). Hydrogen uptake studies show strong reduction peaks at 125 C in Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) against a hydrogen uptake peak at 420 degrees C in Ce(0.67)Fe(0.33)O(2-delta). Fe substituted ceria, Ce(0.67)Fe(0.33)O(2-delta) itself acts as a catalyst for CO oxidation and water gas shift (WGS) reactions at moderate temperatures. The rate of CO conversion in WGS with Pt free Ce(0.65)Fe(0.33)O(2-delta) is 2.8 mu mol g(-1) s(-1) at 450 C and with Pt substituted Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) is 4.05 mu mol g(-1) s(-1) at 275 degrees C. Due to the synergistic interaction of the Pt ion with Ce and Fe ions in Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta), the catalyst showed much higher activity for CO oxidation and WGS reactions compared to Ce(0.67)Fe(0.33)O(2-delta). A reverse WGS reaction does not occur over Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta). The catalyst also does not deactivate even when operated for a long time. Nearly 100% conversion of CO to CO(2) with 100% H(2) selectivity is observed in WGS reactions even up to 550 degrees C. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional triangular-lattice antiferromagnetic systems continue to be an interesting area in condensed matter physics and LiNiO2 is one such among them. Here we present a detailed experimental magnetic study of the quasi-stoichiometric LixNi2-xO2 system (0.67