3 resultados para 6111 Personalidad

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monsoon depressions intensify over the Bay of Bengal, move in a west-north-west (WNW) direction and dissipate over the Indian continent. No convincing physical explanation for their observed movement has so far been arrived at, but here, I suggest why the maximum precipitation occurs in the western sector of the depression and propose a feedback mechanism for the WNW movement of the depressions. We assume that a heat source is created over the Bay of Bengal due to organization of cumulus convection by the initial instability. In a linear sense, heating at this latitude (20° N), produces an atmospheric response mainly in the form of a stationary Rossby–gravity wave to the west of the heat source. The low-level vorticity (hence the frictional convergence) and the vertical velocity associated with the steady-state response is such that the maximum moisture convergence (and precipitation) is expected to occur in the WNW sector at a later time. Thus, the heat source moves to the WNW sector at a later time and the feedback continues resulting in the WNW movement of the depressions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a high velocity gas jet is introduced into a packed bed a cavity is formed. The size of the cavity shows hysteresis on increasing and decreasing gas flow rates. This hysteresis leads to different cavity sizes at same gas flow rate depending on the bed history. The size of cavity affects the gas flow profiles in the packed bed. In this study the cavity size hysteresis phenomenon has been modeled using discrete element method along with turbulent gas flow. A reasonable agreement has been found between computed and experimental results on cavity size ysteresis. The effect of various parameters, such as nozzle height from the bed bottom and packing height, on the cavity size hysteresis has been studied. It is found that inter-particle interaction forces along with gas drag and bed porosity play an important role in describing the cavity size hysteresis. The injection of gas flow allows the particles to go to an unconstrained state than they were previously in, and their ability to remain in that state, even under decreased gas drag force, leads to the phenomenon of cavity size hysteresis. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Factors contributing to the variations in the Cu(I)-Cu(I) distances in two clusters with identical ligand and coordination geometries have been analyzed. While the hexamer, 4, exhibits metal-metal distances in the range 2.81-3.25 Angstrom, shorter contacts are found in the corresponding tetramer, 3 (2.60-2.77 Angstrom). EHT calculations reveal relatively little attractive interactions in the corresponding Cu-4(4+) and Cu-6(6+) cores. Introduction of the ligands lowers the reduced overlap populations between the metals further. MNDO calculations with model electrophiles have been carried out to determine the bite angle requirements of the ligands. These are satisfactorily met in the structures of both 3 and 4. The key geometric feature distinguishing 3 and 4 is the Cu-S-Cu angle involving the bridging S- unit. In 4, the corresponding angles are about 90 degrees, while the values in 3 are smaller (70-73 degrees). Wider angles are computed to be energetically favored and are characterized by an open three-center bond and a long Cu-Cu distance. The bridging angles are suggested to be primarily constrained by the mode of oligomerization. Implications of these results for the stability and reactivity of these clusters and for short metal-metal distances in d(10) systems in general are discussed.