34 resultados para 577 Ecología
em Indian Institute of Science - Bangalore - Índia
Resumo:
Two inorganic-organic hybrid framework iron phosphate-oxalates, I, [N2C4H12](0.5)[Fe-2(HPO4)(C2O4)(1.5)] and II, [Fe-2(OH2)PO4(C2O4)(0.5)] have been synthesized by hydrothermal means and the structures determined by X-ray crystallography. Crystal Data: compound I, monoclinic, spacegroup = P2(1)/c (No. 14), a=7.569(2) Angstrom, b=7.821(2) Angstrom, c=18.033(4) Angstrom, beta=98.8(1)degrees, V=1055.0(4) Angstrom(3), Z=4, M=382.8, D-calc=2.41 g cm(-3) MoK alpha, R-F=0.02; compound II, monoclinic, spacegroup=P2(1)/c (No. 14), a=10.240(1) b=6.375(3) Angstrom, 9.955(1) Angstrom, beta=117.3(1)degrees, V=577.4(1) Angstrom(3), Z=4, M=268.7, D-calc=3.09 g cm(-3) MoK alpha, R-F=0.03. These materials contain a high proportion of three-coordinated oxygens and [Fe2O9] dimeric units, besides other interesting structural features. The connectivity of Fe2O9 is entirely different in the two materials resulting in the formation of a continuous chain of Fe-O-Fe in II. The phosphate-oxalate containing the amine, I, forms well-defined channels. Magnetic susceptibility measurements show Fen to be in the high-spin state (t(2g)(4)e(g)(2)) in II, and in the intermediate-spin state (t(2g)(5)e(g)(1)) in I.
Resumo:
The high temperature phase transformation of hydrazonium sulfate, N2H6SO4 has been studied using DSC. The enthalpy of phase transition is found to be 3.63 ± 0.1 kJ mole−1. The phase transition temperature is found to decrease with the increase of particle size. It appears that the strain energy and not surface energy, is responsible for the phase transformation. The molar volume of the salt increases during the transformation as found by the dilatometric experiment involving percentage of linear thermal expansion. On cooling, the transformation from the high temperature modification to orthorhombic form is incomplete and extends over a wide range of temperature.
Resumo:
One difficulty in summarising biological survivorship data is that the hazard rates are often neither constant nor increasing with time or decreasing with time in the entire life span. The promising Weibull model does not work here. The paper demonstrates how bath tub shaped quadratic models may be used in such a case. Further, sometimes due to a paucity of data actual lifetimes are not as certainable. It is shown how a concept from queuing theory namely first in first out (FIFO) can be profitably used here. Another nonstandard situation considered is one in which lifespan of the individual entity is too long compared to duration of the experiment. This situation is dealt with, by using ancilliary information. In each case the methodology is illustrated with numerical examples.
Resumo:
Joints are primary sources of weakness in structures. Pin joints are very common and are used where periodic disassembly of components is needed. A circular pin in a circular hole in an infinitely large plate is an abstraction of such a pin joint. A two-dimensional plane-stress analysis of such a configuration is carried out, here, subjected to pin-bearing and/or biaxial-plate loading. The pin is assumed to be rigid compared to the plate material. For pin load the reactive stresses at the edges of the infinite plate tend to zero though their integral over the external boundary equals to the pin load. The pin-hole interface is unbonded and so beyond some load levels the plate separates from the pin and the extent of separation is a non-linear function of load level. The problem is solved by inverse technique where the extent of contact is specified and the causative loads are evaluated directly. In the situations where combined load is acting the separation-contact zone specification generally needs two parameters (angles) to be specified. The present report deals with analysing such a situation in metallic (or isotropic) plates. Numerical results are provided for parametric representation and the methodology is demonstrated.
Resumo:
Acoustic impedance of a termination, or of a passive subsystem, needs to be measured not only for acoustic lining materials but also in the exhaust systems of flow machinery, where mean flow introduces peculiar problems. Out of the various methods of measurement of acoustic impedance, the discrete frequency, steady state, impedance tube method [1] is most reliable, though time consuming, and requires no special instrumentation.
Resumo:
A blunt-nosed hypersonic missile mounted with a forward-facing cavity is a good alternative to reduce the stagnation heating rates. The effects of a forward-racing cavity on heat transfer and aerodynamic coefficients are addressed in this paper. Tests were carried out in hypersonic shock tunnel HST2, at a hypersonic Mach number of 8 using a 41 deg apex-angle blunt cone. The aerodynamic forces on the test model with and without a forward-facing cavity at various angles of attack are measured by using an internally mountable accelerometer force balance system. Heat flux measurements have been carried out on the test model with and without a forward-facing cavity of the entire surface at zero degree angle of attack with platinum sensors. A numerical simulation was also carried out using the computational fluid dynamics code (CFX-Ansys 5.7). An important result of this study is that the smaller cavity diameter has the highest lift-to-drag ratio, whereas the medium cavity has the highest heat flux reduction. Theshock structure around the test model has also been visualized using the Schlieren flow visualization technique. The visualized shock structure and the measured aerodynamic forces on the missile-shaped body with cavity configurations agree well with the axisymmetric numerical simulations.
Resumo:
This paper deals with the pulsatile blood flow in the lung alveolar sheets by idealizing each of them as a channel covered by porous media. As the blood flow in the lung is of low Reynolds number, a creeping flow is assumed in the channel. The analytical and numerical results for the velocity and pressure distribution in the porous medium are presented. The effect of an imposed slip condition is also studied. Comparisons with the corresponding results for the steady-state case are made at the end.
Resumo:
A 4-degree-of-freedom single-input system and a 3-degree-of-freedom multi-input system are solved by the Coates', modified Coates' and Chan-Mai flowgraph methods. It is concluded that the Chan-Mai flowgraph method is superior to other flowgraph methods in such cases.
Resumo:
Experimental results on the effect of energy deposition using an electric arc discharge, upstream of a 60° half angle blunt cone configuration in a hypersonic flow is reported.Investigations involving drag measurements and high speed schlieren flow visualization have been carried out in hypersonic shock tunnel using air and argon as the test gases; and an unsteady drag reduction of about 50% (maximum reduction) has been observed in the energy deposition experiments done in argon environment. These studies also show that the effect of discharge on the flow field is more pronounced in argon environment as compared to air, which confirms that thermal effects are mainly responsible for flow alteration in presence of the discharge.
Resumo:
The oxidase-peroxidase from Datura innoxia which catalyses the oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid was also found to catalyse the oxidation of NADH in the presence of Mn2+ and formylphenylacetic acid ethyl ester. NADH was not oxidized in the absence of formylphenylacetic acid ethyl ester, although formylphenylacetonitrile or phenylacetaldehyde could replace it in the reaction. The reaction appeared to be complex and for every mol of NADH oxidized 3-4 g-atoms of oxygen were utilized, with a concomitant formation of approx. 0.8 mol of H2O2, the latter being identified by the starch-iodide test and decomposition by catalase. Benzoylformic acid ethyl ester was also formed in the reaction, but in a nonlinear fashion, indicating a lag phase. In the absence of Mn2+, NADH oxidation was not only very low, but itself inhibited the formation of benzoylformic acid ethyl ester from formylphenylacetic acid ethyl ester. A reaction mechanism for the oxidation of NADH in the presence of formylphenylacetic acid ethyl ester is proposed.
Resumo:
Surface oxidation of three metglasses in the Cu-Zr system has been investigated by employing X-ray photoelectron spectroscopy and Auger electron spectroscopy with a view to comparing their oxidation behaviour with that of the corresponding crystalline states of the alloys. Surface oxidation of pure Zr metal has also been examined in detail using these techniques. Sub-oxides of Zr are formed during the initial stages of oxidation of Zr (at oxygen exposures <10L), while at higher exposures, ZrO2 is formed together with the highest possible sub-oxide which the authors designate as 'ZrO'. The relative proportion of 'ZrO' goes through a maximum in the range 25-50 L. Both the glassy and the crystalline states of the Cu-Zr alloys exhibit preferential oxidation of Zr. The glassy alloys exhibit a higher rate of oxidation at intermediate exposures compared with the crystalline states of the alloys; the extent of oxidation at higher oxygen exposures is, however, higher for crystalline alloys. Interatomic Auger transitions have been found in the Zr+O2 system as well as in Cu-Zr alloys.
Resumo:
Fe-substituted CeVO4 was synthesized by the solution combustion technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, transmission electron microscopy and BET surface area analyzer. These compounds crystallized in tetragonal zircon structure with Fe substituted in ionic state for Ce3+ ions. The degradation of anionic and cationic dyes was studied over Fe-substituted CeVO4 compounds. The compounds showed high photocatalytic activity towards dye degradation. The effect of amount of substitution was studied by varying the Fe substitution from 1 to 10%. The rates decreased with increasing substitution of Fe in CeVO4 and 1% Fe substituted CeVO4 showed the highest photocatalytic activity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
COENZYME Q (CoQ), which is widely distributed in animal, plant and microbial sources, has been implicated in electron transport1 and generally assumed to be associated with mitochondria. However, it has also been found in non-mitochondrial fractions of green leaves, although it appears to be concentrated in mitochondria2. A similar distribution has now been demonstrated in rat liver cell fractions.
Resumo:
The force constants of H2 and Li2 are evaluated employing their extended Hartree-Fock wavefunctions by a polynomial fit of their force curves. It is suggested that, based on incomplete multiconfiguration Hartree-Fock wavefunctions, force constants calculated from the energy derivatives are numerically more accurate than those obtained from the derivatives of the Hellmann-Feynman forces. It is observed that electrons relax during the nuclear vibrations in such a fashion as to facilitate the nuclear motions.
Resumo:
C15H22N204.H20 , Mr= 312.37, monoclinic,P21, a=5.577(2), b=8.686(2), c= 16.228 (2) A,fl=92.63(2) ° , V=785(1)A 3, Z=2, O =1.34,Dx= 1.32Mgm -3, CuKa, 2= 1.54184'~, /2=0.78 mm -I, F(000) = 320, T= 293 K. The final R value for 1607 observed reflections ll,,>_3tr(l,,)l is 0.039. The terminal N 1 is protonated and the dipeptide exists as a zwitterion. The crystal structure is stabilized by extensive hydrogen-bonding interactions involving N and O atoms, with N...O in the range 2.65 (1)-2.95 (1) ,/~ and O...O in the range 2.60 (1)-2.78 (1) A.