118 resultados para 5,5-DIMETHYL-1-PYRROLINE N-OXIDE
em Indian Institute of Science - Bangalore - Índia
Resumo:
The use of fac-[Mo(CO)(3)(MeCN)(eta(2)-L(1))] (1a) {L(1) = Ph(2)PN(Pr-i)PPh(DMP)}(2) as a precursor to metalloligands and bimetallic, heterotrimetallic, and heptacoordinated complexes is reported. The reaction of 1a with diphosphazane, dppa, or a diphosphinoalkane such as dppm or dppe yields the fac-eta(1)-diphosphine substituted metalloligands, fac-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-PXP)] {PXP = dppa (2), dppm (3), and dppe (4)}. These undergo isomerization to yield the corresponding mer-diphosphine complexes (5-7). Oxidation of the uncoordinated phosphorus atom of the mer-eta(1)-dppm-substituted complex eventually provides mer-[Mo(CO)(3)-(eta(2)-L(1)){eta(1)-Ph(2)PCH(2)P(O)Ph(2)}](8). The structure of the latter complex has been confirmed by single crystal X-ray diffraction {triclinic system, P ($) over bar 1; a = 11.994(3), b = 14.807(2), c = 15.855(3) Angstrom; alpha = 114.24(1), beta = 91.35(2), and gamma = 98.95(1)degrees; Z = 2, 4014 data (F-0 > 5 sigma(F-0)), R = 0.066, R(W) = 0.069}. Treatment of the dppe metalloligand 7 with [PtCl2(COD)] yields the heterotrimetallic complex cis-[PtCl2{mer-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-dppe]}(2)] (9). Attempts to prepare a related trimetallic complex with the dppm-containing metalloligand were unsuccessful; only the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) and cis-[PtCl2(eta(2)-dppm)] were obtained. Reaction of la with dppe in the ratio 2:1 yields the mer-mer dinuclear complex [{mer-[Mo(CO)(3)(eta(2)-L(1))]}(2)(mu-dppe)] (10) bridged by dppe. Oxidation of 1a with iodine yields the Mo(II) heptacoordinated complex [MoI2(CO)(2)(eta(3)-L(1))] (11) with tridentate PPN coordination. The same Mo(II) complex 11 is also obtained by the direct oxidation of the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) with iodine. The structure of 11 has been confirmed by X-ray diffraction studies {monoclinic system, Cc; a = 10.471(2), b = 19.305(3), c = 17.325(3) Angstrom; beta = 95.47(2)degrees; Z = 4, 3153 data (F-0 > 5 sigma(F-0)), R = 0.049, R(W) = 0.051}. This complex exhibits an unusual capped-trigonal prismatic geometry around the metal. A similar heptacoordinated complex 12 with a chiral diphosphazane ligand {L(3) = (S,R)-P(h)2PN-(*CHMePh)*PPh(DMP)} has also been synthesized.
Resumo:
The title compound, C16H18N2O2, is an important precursor in the synthesis of 1,2,3,4-tetrahydropyrazinoindoles, which show excellent antihistamine, antihypertensive and central nervous system depressant properties. The carbethoxy group attached to C2 and the planar cyanoethyl group attached to N1 make dihedral angles of 11.0(4) and 75.0(3)degrees, respectively, with the mean plane of the indole ring, The C-C=N chain is linear with a bond angle of 179.3 (4)degrees.
Resumo:
Emmotin-H, a naturally occurring sesquiterpenoid 1,2-naphthoquinone pigment (1) has been synthesised in a four step sequence starting from the known 5,8-dimethyl-4-oxotetralin-2-carboxylic acid (3a). Selenium dioxide oxidation of its methyl ester (3b) gives 3-methoxycarbonyl-5,8-dimethyl-1,2-naphthoquinone (4) which on reductive acetylation affords the corresponding diacetoxynaphthalene ester (5). Its reaction with excess of methylmagnesium iodide is accompanied by aerial oxidation during work-up and furnishes emmotin-H (1).
Resumo:
The molecular conformation of the title compound, C20H17N3, is stabilized by an intramolecular C-H center dot center dot center dot N interaction. The crystal structure shows intermolecular C-H center dot center dot center dot pi interactions. The dihedral angle between the isoquinoline unit and the phenyl ring is 11.42 (1)degrees whereas the isoquinoline unit and the pendent dimethyl pryrazole unit form a dihedral angle of 50.1 (4)degrees. Furthermore, the angle between the mean plane of the phenyl ring and the dimethyl pyrazole unit is 47.3 (6)degrees.
Resumo:
Grignard reaction of ethyl 3-(3,5-dimethoxyphenyl)-propionate (4) followed by cyclodehydration of the carbinol (5) with conc H2SO4 gave 4,6-dimethoxy-3,3-dimethylindane (6). Oxidation of the indane (6) with CrO3-pyridine complex in methylene chloride gave 4,6-dimethoxy-3,3-dimethylindan-1- one (1) in high yield. Conjugate addition of methyl magnesium iodide to methyl α-cyano-β-methyl-3,5-dimethoxycinnamate (11), prepared from 3,5-dimethoxyacetophenone (10) by Knoevenagel condensation, resulted in methyl 2-cyano-3-(3,5-dimethoxyphenyl)-3,3-dimethylpropionate (12). Refluxing the ester (12) with aq DMSO containing sodium chloride gave the corresponding nitrile (15) which underwent Höesch reaction to yield 5,7-dimethoxy-3,3-dimethylindan-1-one (2).
Resumo:
In the title compound, C18H21NO3, the 1,4-dihydropyridine ring exhibits a flattened boat conformation. The methoxyphenyl ring is nearly planar [r.m.s. deviation = 0.0723 (1) angstrom] and is perpendicular to the base of the boat [dihedral angle = 88.98 (4)degrees]. Intermolecular N-H center dot center dot center dot O and C-H center dot center dot center dot O hydrogen bonds exist in the crystal structure.
Resumo:
In the title compound, C19H21Cl2NO4, the dihydropyridine ring adopts a flattened boat conformation. The dichlorophenyl ring is oriented almost perpendicular to the planar part of the dihydropyridine ring [dihedral angle = 89.1 (1)degrees]. An intramolecular C-H center dot center dot center dot O hydrogen bond is observed. In the crystal structure, molecules are linked into chains along the b axis by N-H center dot center dot center dot O hydrogen bonds.
Resumo:
The 1,4-dihydropyridine ring in the title hydrate, C17H18BrNO2 center dot H2O, has a flattened-boat conformation, and the benzene ring is occupies a position orthogonal to this [dihedral angle: 82.19 (16)degrees]. In the crystal packing, supramolecular arrays mediated by N-H center dot center dot center dot O-water and O-water-H center dot center dot center dot O-carbonyl hydrogen bonding are formed in the bc plane. A highly disordered solvent molecule is present within a molecular cavity defined by the organic and water molecules. Its contribution to the electron density was removed from the observed data in the final cycles of refinement and the formula, molecular weight and density are given without taking into account the contribution of the solvent molecule.
Resumo:
Synthesis of 5, 5-dimethyl- 7-methoxy-4 -oxatricyclo[4,3,1,0(3,7)]- decan-2-one 3a, a novel heterocyclic ring system present in morellin 1, and its 3-substituted derivatives 3b-e, is described from the Diels-Alder adducts 7, available from 1-methoxycyclohexa-1,4-dienes 4. Two routes, which involved the halocyclisation and the oxidative addition, were investigated for the conversion of the adducts 7 into 3. While the halocyclisation method resulted in mixtures, excellent yields of the target molecule were obtained by the second method. Solvolysis of the bromoether 9 resulted in a mixture of rearranged products 10, 13, 15 and 16.
Resumo:
Two new synthetic routes for the preparation of the title compound and its 3-substituted derivatives, a novel ring system present in morellin and other related natural products, are reported from the readily available dihydroanisoles.
Resumo:
C13HI3N302, orthorhombic, P2~2121, a = 17.443 (5), b = 11.650 (4), c = 5.784 (1)/~, Z = 4, d m = 1.456, d c = 1.429 Mg m -3, F(000) = 512, g(Cu Ka) = 0.843 mm-L The R index is 0.040 for 1358 significant reflections. The structure is stabilized by C-H...O interactions. The N-methylated eis peptide group which forms part of a six-membered ring is non-planar. The torsion angle about the peptide bond is -6.1 (4) ° and the peptide bond length is 1.337 (3) A.
Resumo:
The dithiolactone (1) upon excitation gives the dithione (2) in cyclohexane and other aprotic solvents and a 1 : 1 adduct in hydroxylic solvents from an n* excited singlet state via an -cleavage process.