9 resultados para 45-395

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventionally two-dimensional NMR spectra are recorded in the absolute-intensity mode (1-4). It has recently been demonstrated that absorption-mode 2D spectra have much higher resolution and are the preferred mode of presentation, especially for 2D spectra of biomolecules (5-7). Indeed, any experimental scheme which yields phasemixed lineshapes is subject to modification to yield pure-phase spectra, even at the expense of intensity and anomalous multiplet structure (8-10). For this purpose two types of filters are already known: the z filter (9, 20) and the purging pulse (8, 10). In this note, we propose a 45” pulse pair as a filter for obtaining pure-phase 2D spectra, mainly for experiments in which the above filters do not yield pure-phase spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different modes of binding of pyrimidine monophosphates 2'-UMP, 3'-UMP, 2'-CMP and 3'-CMP to ribonuclease (RNase) A are studied by energy minimization in torsion angle and subsequently in Cartesian coordinate space. The results are analysed in the light of primary binding sites. The hydrogen bonding pattern brings out roles for amino acids such as Asn44 and Ser123 apart from the well known active site residues viz., His12,Lys41,Thr45 and His119. Amino acid segments 43-45 and 119-121 seem to be guiding the ligand binding by forming a pocket. Many of the active site charged residues display considerable movement upon nucleotide binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple technique is devised to measure the angles of 90-, 45-, 45-deg and 60-, 30-, 90-deg prisms without using expensive spectrometers, autocollimators, and angle gauges. The method can be extended to unpolished and opaque prisms made of materials other then glass. (C) 1997 Society of Photo-Optical instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present insightful results on the kinetics of photodarkening (PD) in Ge(x)As(45-x)Se(55) glasses at the ambient and liquid helium temperatures when the network rigidity is increased by varying x from 0 to 16. We observe a many fold change in PD and its kinetics with decreasing network flexibility and temperature. Moreover, temporal evolution of PD shows a dramatic change with increasing x. (C)2011 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present study reveals that the length-scale of phase separation in La5/8-yPryCa3/8MnO3 thin films can be controlled by strain disorder invoked during the growth and relaxation process of film. Strain disorder provides an additional degree of freedom to tune colossal magnetoresistance. Magneto-transport measurements following cooling and heating in unequal fields protocol demonstrate that coherent strain stabilizes antiferromagnetic insulating phase, while strain disorder favors ferromagnetic metallic phase. Compared to bulk, antiferromagnetic-insulating phase freezes at lower temperatures in strain disordered films. Raman spectroscopy confirms the coexistence of charge-ordered-insulating and ferromagnetic-metallic phases which are structurally dissimilar and possess P2(1)/m and R-3C like symmetries, respectively. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.