14 resultados para 343,01
em Indian Institute of Science - Bangalore - Índia
Resumo:
The development of a microstructure in 304L stainless steel during industrial hot-forming operations, including press forging (mean strain rate of 0.15 s(-1)), rolling/extrusion (2-5 s(-1)), and hammer forging (100 s(-1)) at different temperatures in the range 600-1200 degrees C, was studied with a view to validating the predictions of the processing map. The results have shown that excellent correlation exists between the regimes exhibited by the map and the product microstructures. 304L stainless steel exhibits instability bands when hammer forged at temperatures below 1100 degrees C, rolled/extruded below 1000 degrees C, or press forged below 800 degrees C. All of these conditions must be avoided in mechanical processing of the material. On the other hand, ideally, the material may be rolled, extruded, or press forged at 1200 degrees C to obtain a defect-free microstructure.
Resumo:
The ultrafast vibrational phase relaxation of O–H stretch in bulk water is investigated in molecular dynamics simulations. The dephasing time (T2) of the O–H stretch in bulk water calculated from the frequency fluctuation time correlation function (Cω(t)) is in the range of 70–80 femtosecond (fs), which is comparable to the characteristic timescale obtained from the vibrational echo peak shift measurements using infrared photon echo [W.P. de Boeij, M.S. Pshenichnikov, D.A. Wiersma, Ann. Rev. Phys. Chem. 49 (1998) 99]. The ultrafast decay of Cω(t) is found to be responsible for the ultrashort T2 in bulk water. Careful analysis reveals the following two interesting reasons for the ultrafast decay of Cω(t). (A) The large amplitude angular jumps of water molecules (within 30–40 fs time duration) provide a large scale contribution to the mean square vibrational frequency fluctuation and gives rise to the rapid spectral diffusion on 100 fs time scale. (B) The projected force, due to all the atoms of the solvent molecules on the oxygen (FO(t)) and hydrogen (FH(t)) atom of the O–H bond exhibit a large negative cross-correlation (NCC). We further find that this NCC is partly responsible for a weak, non-Arrhenius temperature dependence of the dephasing rate.
Resumo:
Isochronal and isothermal ageing experiments have been carried out to determine the influence of 0.01 at. % addition of a second solute on the clustering rate in the quenched Al-4,4 a/o Zn alloy. The influence of quenching and ageing temperatures has been interpreted to obtain the apparent vacancy formation and vacancy migration energies in the various ternary alloys. Using a vacancy-aided clustering model the following values of binding free energy have been evaluated: Ce-0.18; Dy-0.24; Fe-0.18; Li-0.25; Mn-0.27; Nb-0.18; Pt-0.23; Sb-0.21; Si-0.30; Y-0.25; and Yb-0.23 (± 0.02 eV). These binding energy values refer to that between a solute atom and a single vacancy. The values of vacancy migration energy (c. 0.4 eV) and the experimental activation energy for solute diffusion (c. 1.1 eV) are unaffected by the presence of the ternary atoms in the Al-Zn alloy.
Resumo:
Hydrolysis of p-nitrophenyl-beta-D-glucoside by the beta-glucosidase of a thermophilic and cellulolytic fungus, Humicola insolens was stimulated by two-fold in the presence of high concentrations of beta-mercaptoethanol. This enzyme did not have any free sulfhydryl groups and high concentrations of beta-mercaptoethanol (5% v/v) reduced all of the three disulfide bonds present in the enzyme. In contrast, the hydrolysis of cellobiose and cellulose polymers was inhibited by 50% under the same conditions. Sodium dodecyl sulfate (1% w/v) even in combination with beta-mercaptoethanol did not show any significant effects on this enzyme. These unusual properties suggest that this enzyme may be of significant importance for understanding the structure of the enzyme.
Resumo:
Reinforced concrete corbels have been analysed using the nonlinear finite element method. An elasto-plastic-cracking constitutive formulation using Huber-Hencky-Mises yield surface augmented with a tension cut-off is employed. Smeared-fixed cracking with mesh-dependent strain softening is employed to obtain objective results. Multiple non-orthogonal cracking and opening and closing of cracks are permitted. The model and the formulation are verified with respect to available numerical solution for an RC corbel. Results of analyses of nine reinforced concrete corbels are presented and compared with experimental results. Nonlinear finite element analysis of reinforced concrete structures is shown to be a complement and also a feasible alternative to laboratory testing.
Resumo:
Synthesis of methyl 2, 7-dimethyltricyclo{5.2.2.0(1,5}undec-5-en-6-carboxylates, the tricyclic skeleton present in (+)-allo-cedrol (1) is described using the Diels-Alder strategy. Thus, Birch reduction of the aromatic acid 8 gives 5, the methyl ester of which is isomerised with DBU to a 1:1 mixture of the dienes 6 and 4. Cycloaddition of this mixture with 2-chloroacrylonitrile followed by hydrolysis yields the ketone 60 having the tricyclo{5.2.2.0(1.5)}undec-5-ene framework. Similar reaction with methyl vinyl ketone affords the regioisomeric adducts 61 and 62.
Resumo:
Temperature dependent Mossbauer measurements are done on the samples of La1- xCaxMn1-y (FeyO3)-Fe-57 with x=0 and 0.25, and y=0.01. With decreasing temperature, the specimen with x=0.25 shows a paramagnetic to ferromagnetic transition around 175 K. In the specimen x=0.0, the temperature dependence of both the center shift (delta) and the recoilless fraction (f) can be fitted very well with the Debye theory with a theta(D)=320+/-50 K. But for the specimens with x=0.25, f and delta show distinct deviations from the Debye behavior in the temperature range in which the resistivity shows a sharp decrease. Dips observed in both the f and delta around the transition temperature suggest that the Jahn-Teller distortion observed in these systems is dynamic in nature.
Resumo:
Electrochemical oxidation of sodium borohydride (NaBH(4)) and ammonia borane (NH(3)BH(3)) (AB) have been studied on titanium carbide electrode. The oxidation is followed by using cyclic voltammetry, chronoamperometry and polarization measurements. A fuel cell with TiC as anode and 40 wt% Pt/C as cathode is constructed and the polarization behaviour is studied with NaBH(4) as anodic fuel and hydrogen peroxide as catholyte. A maximum power density of 65 mW cm(-2) at a load current density of 83 mA cm(-2) is obtained at 343 K in the case of borhydride-based fuel cell and a value of 85 mW cm(-2) at 105 mA cm(-2) is obtained in the case of AB-based fuel cell at 353 K. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 degrees C and annealing results in the growth of nanowires of average (modal) length similar to 200 nm and diameter of 15 +/- 4 nm and consequently an aspect ratio of similar to 13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 degrees C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred 0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The diamond films were deposited onto a wurtzite gallium nitride (GaN) thin film substrate using hot-filament chemical vapor deposition (HFCVD). During the film deposition a lateral temperature gradient was imposed across the substrate by inclining the substrate. As grown films predominantly showed the hexagonal phase, when no inclination was applied to the substrate. Tilting the substrate with respect to the heating filament by 6 degrees imposed a lateral temperature gradient across the substrate, which induced the formation of a cubic diamond phase. Diamond grains were predominantly oriented in the (100) direction. However, a further increase in the substrate tilt angle to 12 degrees, resulted in grains oriented in the (111) direction. The growth rate and hence the morphology of diamond grains varied along the inclined substrate. The present study focuses on the measurements of dominant phase formation and crystal orientation with varying substrate inclination using orientation-imaging microscopy (OIM). This technique enables direct examination of individual diamond grains and their crystallographic orientation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Lattice oxygen of TiO2 is activated by the substitution of Pd ion in its lattice. Ti1-xPdxO2-x (x = 0.01-0.03) have been synthesized by solution combustion method crystallizing in anatase TiO2 structure. Pd is in +2 oxidation state and Ti is in +4 oxidation state in the catalyst. Pd is more ionic in TiO2 lattice compared to Pd in PdO. Oxygen storage capacity defined by ``amount of oxygen that is used reversibly to oxidize CO'' is as high as 5100 mu mol/g of Ti0.97Pd0.03O1.97. Oxygen is extracted by CO to CO2 in absence of feed oxygen even at room temperature which is more than 20 times compared to pure TiO2. Rate of CO oxidation is 2.75 mu mol g(-1) s(-1) at 60 degrees C over Ti0.97Pd0.03O1.97 and C2H2 gets oxidized to CO2 and H2O at room temperature. Catalyst is not poisoned on long time operation of the reactor. Such high catalytic activity is due to activated lattice oxygen created by the substitution of Pd ion as seen from first-principles density functional theory (DFT) calculations with 96 atom supercells of Ti32O64, Ti31Pd1O63, Ti30Pd2O62, and Ti29Pd3O61. The compounds crystallize in anatase TiO2 structure with Pd2+ ion in nearly square planar geometry and TiO6 octahedra are distorted by the creation of weakly bound oxygens. Structural analysis of Ti31Pd1O63 which is close to 3% Pd ion substituted TiO2 shows that oxygens associated with both Ti and Pd ions in the lattice show bond valence sum of 1.87, a low value characteristic of weak oxygen in the lattice compared to oxygens with valence 2 and above in the same lattice. Exact positions of activated oxygens have been identified in the lattice from DFT calculations.
Resumo:
SrRuO3 is widely known to be an itinerant ferromagnet with a T-C similar to 160 K. It is well known that glassy materials exhibit time dependent phenomena such as memory effect due to their generic slow dynamics. However, for the first time, we have observed memory effect in SrRu(1-x)O3 (0.01
Resumo:
A series of Bi1-xEuxOX (X = F and Br; x = 0, 0.01, 0.03 and 0.05) phosphors were synthesized at relatively low temperature and short duration (500 degrees C, 1 h). Rietveld refinement results verified that all the compounds were crystallized in the tetragonal structure with space group P4/nmm (no. 129). Photoluminescence spectra exhibit characteristic luminescence D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The magnetic dipole (D-5(0) -> F-7(1)) transition dominates the emission of BiOF:Eu3+, while the electric dipole (D-5(0) -> F-7(2)) peak was stronger in BiOBr:Eu3+ phosphors. The evaluated CIE color coordinates for Bi0.95Eu0.05OBr (0.632, 0.358) are close to the commercial Y2O3:Eu3+ (0.645, 0.347) and Y2O2S:Eu3+ (0.647, 0.343) red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition rates (A), branching ratios (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau) were calculated using the Judd-Ofelt theory. It was observed that BiOBr:Eu3+ phosphors have a long lifetime (tau) and better optical gain (sigma(e) x tau) as compared to reported Eu3+ doped materials. Furthermore, these compounds exhibit excellent photocatalytic activity for the degradation of rhodamine B dye under visible light irradiation. The determined radiative properties and photocatalytic results revealed that BiOBr:Eu3+ phosphors have potential applications in energy and environmental remedies, such as to develop red phosphors for white light-emitting diodes, red lasers and to remove toxic organic industrial effluents.