79 resultados para 303-U1302
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new quaternary fast-ion conducting silver molybdo-arsenate [Agl-Ag2O-(MoO3 + As2O5)] (SMA) glassy system has been prepared using the melt-quenching technique for various dopant salt (Agl) concentrations by fixing the formers (MoO3 + As2O5) composition and the modifier (Ag2O) to formers (M/F) ratio. The prepared compounds were characterized by X-ray diffraction. The impedance measurements were made on different Agl compositions of the SMA glasses as a function of frequency (6.5 Hz-65 kHz) and temperature (303-343 K), using the Solatron frequency-response analyser(model 1250). The bulk conductivity and the appropriate physical model (equivalent circuit) of the SMA glass were obtained from the impedance analysis. The a.c. conductivity was calculated for different Agl compositions of SMA glasses at various temperatures and the obtained a.c. conductivity results were analysed using Jonscher's Universal Law. The conduction mechanism for the highest conducting SMA glassy compound has been explained using the diffusion path model.
Resumo:
Adopting a two-temperature and two-velocity model, appropriate to a bidisperse porous medium (BDPM) proposed by Nield and Kuznetsov (2008), the classical steady, mixed convection boundary layer flow about a horizontal, isothermal circular cylinder embedded in a porous medium has been theoretically studied in this article. It is shown that the boundary layer analysis leads to expressions for the flow and heat transfer characteristics in terms of an inter-phase momentum parameter, a thermal diffusivity ratio, a thermal conductivity ratio, a permeability ratio, a modified thermal capacity ratio, and a buoyancy or mixed convection parameter. The transformed partial differential equations governing the flow and heat transfer in the f-phase (the macro-pores) and the p-phase (the remainder of the structure) are solved numerically using a very efficient implicit finite-difference technique known as Keller-box method. A good agreement is observed between the present results and those known from the open literature in the special case of a traditional Darcy formulation (monodisperse system).
Resumo:
Computation of the dependency basis is the fundamental step in solving the implication problem for MVDs in relational database theory. We examine this problem from an algebraic perspective. We introduce the notion of the inference basis of a set M of MVDs and show that it contains the maximum information about the logical consequences of M. We propose the notion of an MVD-lattice and develop an algebraic characterization of the inference basis using simple notions from lattice theory. We also establish several properties of MVD-lattices related to the implication problem. Founded on our characterization, we synthesize efficient algorithms for (a) computing the inference basis of a given set M of MVDs; (b) computing the dependency basis of a given attribute set w.r.t. M; and (c) solving the implication problem for MVDs. Finally, we show that our results naturally extend to incorporate FDs also in a way that enables the solution of the implication problem for both FDs and MVDs put together.
Resumo:
A room-temperature cathodic electrolytic process was developed in the laboratory to recover zinc from industrial leach residues. The various parameters affecting the electroleaching process were studied using a statistically designed experiment. To understand the mechanisms behind the electrode processes, cyclic voltammetry and galvanostatic studies were carried out. The role of Einh measurements in monitoring such an electroleaching procedure is also shown. Since significant amounts of iron were also present in the leach liquor, attempts were made to purify it before zinc recovery by electrowinning. Reductive dissolution and creation of anion vacancies were found to be responsible for the dissolution of zinc ferrite present in the leach residue. A flow sheet of the process is given.
Resumo:
Valinomycin, an ionophore of considerable interest for its ion selectivity, and its K+, Mg2+, Ba2+, and Ca2+ complexes were studied by Raman spectroscopy. Each complex has a characteristic spectrum which differs from that of uncomplexed valinomycin, suggesting several distinct structures for each of the metal-valinomycin complexes. The biologically active potassium complex shows the most significant changes in its spectrum, especially in the intensity of the symmetric C---H stretching vibration of CH3 and the convergence of the two ester carbonyl stretching vibration bands into one complex formation. These results are due to the unique orientation of the ester carbonyl groups toward the caged potassium ion and the resulting more free rotation of isopropyl side chains. The divalent cation-valinomycin complexes examined showed spectra which differed in each case uniquely from both valinomycin and its complex with potassium.
Resumo:
It is shown that in the finite-element formulation of the general quasi-harmonic equation using tetrahedral elements, for every member of the element family there exists just one numerical universal matrix indpendent of the size, shape and material properties of the element. Thus the element matrix is conveniently constructed by manipulating this single matrix along with a set of reverse sequence codes at the same time accounting for the size, shape and material properties in a simple manner.
Resumo:
In this paper materials like rice husk ash, burnt clay and red mud are examined for their pozzolanic properties. Rice husk ash, obtained from various sources, is analysed by X-ray diffraction. Compressive strength properties of lime-pozzolana mortars with rice husk ash, burnt clay and red mud as pozzolana are studied. Influence of grinding of rice husk ash and intergrinding with lime are also investigated. Combination pozzolana with partial replacement of burnt clay and red mud by rice husk ash are examined for their pozzolanic properties. Long term strength behaviour of lime-pozzolana mortars is investigated to understand the durability of lime-pozzolana cements.
Resumo:
A branch and bound type algorithm is presented in this paper to the problem of finding a transportation schedule which minimises the total transportation cost, where the transportation cost over each route is assumed to be a piecewice linear continuous convex function with increasing slopes. The algorithm is an extension of the work done by Balachandran and Perry, in which the transportation cost over each route is assumed to beapiecewise linear discontinuous function with decreasing slopes. A numerical example is solved illustrating the algorithm.
Resumo:
The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.
Resumo:
The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.
Resumo:
The sparking potentials and swarm coefficients ( ionization and attachment coefficients) were measured in Freon and Freon-air mixtures over the range of 24·3 times 10-16≤ E/ N ≤ 303 times 10-16 V cm2. Addition of Freon increased the sparking potential, and the rate of increase of the attachment coefficient with increasing percentage of Froon in the mixture was much larger than the rate of change of the first ionization coefficient.
Resumo:
The theoretical results derived in Part I (Ramachandran, G.N., Lakshminarayan, A.V. and Kolaskar, A.S. (1973) Biochim. Biophys. Acta 303, 8–13) that the three bonds of the peptide unit meeting at N can have a pyramidal structure is confirmed by an analysis of 14 published crystal structures of small peptides. It is shown that the dihedral angles θN and Δω are correlated, while θC, is small and is uncorrelated with Δω, showing that the non-planar distortion at C′ is generally small.
Resumo:
By means of CNDO/2 calculations on N-methyl acetamide, it is shown that the state of minimum energy of the trans-peptide unit is a non-planar conformation, with the NH and NC2α bonds being significantly out of the plane formed by the atoms C1α, C′, O and N.
Resumo:
The conformation of three linked peptide units having an internal 4 → 1 type of hydrogen bond has been studied in detail, and the low energy conformations are listed. These conformations all lead to the reversal of the chain direction, and may therefore be called as “hairpin bends” or “U-bends”. Since this bend can occur at the end of two chains hydrogen-bonded in the antiparallel β-conformation, it is also known as the “β-bend”. Two types of conformation are possible when the residues at the second and third Cα atoms are both of type L (the LL bend), while only one type is possible for the LD and the DL bend. The LL bend can also accommodate the sequences LG, GL, GG (G = glycine), while the LD bend can accommodate the sequences LG, GD and GG. The conformations for the sequences DD and DL are exact inverses (or mirror images) of those for the sequences LL and LD, respectively, and have dihedral angles (phi2, ψ2), (phi3, ψ3) of the same magnitudes, but of opposite signs as those for the former types, which are listed, along with the characteristics (length, angle and energy) of the hydrogen bonds. A comparison of the theoretical predictions with experimental data (from X-ray diffraction and NMR studies) on proteins and peptides, show reasonably good agreement. However, a systematic trend is observable in the experimental data, slightly deviating from theory, which indicates that some deformations occur in the shapes of the peptide units forming the bend, differing from that of the standard planar peptide unit.
Resumo:
This paper describes a detailed study of the structure of turbulence in boundary layers along mildly curved convex and concave surfaces. The surface curvature studied corresponds to δ/Rw = ± 0·01, δ being the boundary-layer thickness and Rw the radius of curvature of the wall, taken as positive for convex and negative for concave curvature. Measurements of turbulent energy balance, autocorrelations, auto- and cross-power spectra, amplitude probability distributions and conditional correlations are reported. It is observed that even mild curvature has very strong effects on the various aspects of the turbulent structure. For example, convex curvature suppresses the diffusion of turbulent energy away from the wall, reduces drastically the integral time scales and shifts the spectral distributions of turbulent energy and Reynolds shear stress towards high wavenumbers. Exactly opposite effects, though generally of a smaller magnitude, are produced by concave wall curvature. It is also found that curvature of either sign affects the v fluctuations more strongly than the u fluctuations and that curvature effects are more significant in the outer region of the boundary layer than in the region close to the wall. The data on the conditional correlations are used to study, in detail, the mechanism of turbulent transport in curved boundary layers. (Published Online April 12 2006)