15 resultados para 3.450.772
em Indian Institute of Science - Bangalore - Índia
Resumo:
Thioacetamide, a hepatocarcinogen and an inhibitor of heme synthesis, blocks the phenobarbitone- mediated increase in the transcription of cytochrome P-450b+e messenger RNA in rat liver. This property is also shared by CoCl, and 3-amino-l,2,4-triazole, two other inhibitors of heme synthesis. Thus, it appears feasible that heme may serve as a positive regulator of cytochrome P-450b+e gene transcription. Thioacetamide enhances albumin messenger RNA concentration, whereas phenobarbitone decreases the same. However, these changes in albumin messenger RNA concentration are not accompanied by corresponding changes in the transcription rates. Therefore, drug-mediated changes in albumin messenger RNA concentration are due to posttranscriptional regulation. The property of thioacetamide to enhance the albumin messenger RNA concentration is not shared by CoC1, and 3-amino- 1,2,4-triazole. Therefore, heme does not appear to be a regulatory molecule mediating the reciprocal changes brought about in the concentrations of cytochrome P-450b+e and albumin messenger RNAs.
Resumo:
A cDNA clone for cytochrome P-450e, a phenobarbitone-inducible species in rat liver, has been isolated and characterized. With the use of this cloned DNA, an attempt has been initiated to elucidate the factors regulating the cytochrome P-450 gene expression. Inhibitors of heme synthesis such as cobalt chloride and 3-amino-1,2,4-triazole block the induction of cytochrome P-450e by phenobarbitone at the level of transcription. This is evident from the decrease in the rate of synthesis of cytochrome P-450e, a decrease in the levels of specific translatable messenger RNA, a decrease in the specific cytoplasmic and nuclear messenger RNA contents, and nuclear transcription of cytochrome P-450e gene, as revealed by hybridization to the cloned probe, under these conditions. It is proposed that heme is a general regulator of cytochrome P-450 gene expression at the level of transcription, whereas the drug or its metabolite would impart the specificity needed for the induction of a particular species.
Resumo:
A cDNA clone for the Ya subunit of glutathione transferase from rat liver was constructed in E.coli. The clone hybridized to Ya and Yc subunit messenger RNAs. On the basis of experiments involving cell-free translation and hybridization to the cloned probe, it was shown that prototype inducers of cytochrome P-450 such as phenobarbitone and 3-methylcholanthrene as well as inhibitors such as CoCl2 and 3-amino-l,2,4-triazole enhanced the glutathione transferase (Ya+Yc) messenger RNA contents in rat liver. A comparative study with the induction of cytochrome P-450 (b+e) by phenobarbitone revealed that the drug manifested a striking increase in the nuclear pre-messenger RNAs for the cytochrome at 12 hr, but did not significantly affect the same in the case of glutathione transferase (Ya+Yc). 3-Amino-l, 2,4-tnazole and CoCl- blocked the phenobarbitone mediated increase in cytochrome P-450 (b+e) nuclear pre-messenger RNAs. These compounds did not significantly affect the glutathione transferase (Ya+Yc) nuclear pre-messenger RNA levels. The polysomal, poly (A)- containing messenger RNAs for cytochrome P-450 (b+e) increased by 12–15 fold after phenobarbitone administration, reached a maximum around 16hr and then decreased sharply. In comparison, the increase in the case of glutathione transferase (Ya+Yc) mesenger RNAs was sluggish and steady and a value of 3–4 fold was reached around 24 hr. Run-off transcription rates for cytochrome P-450 (b+e) increased by nearly 15 fold in 4 hr after phenobarbitone administration, whereas the increase for glutathione transferase (Ya+Yc) was only 2.0 fold. At 12 hr after the drug administration, the glutathione transferase (Ya+Yc) transcription rates were near normal. Administration of 3-amino-l,2,4-triazole and CoCl2 blocked the phenobarbitone-mediated increase in the transcription of cytochrome P-450 (b+e) messenger RNAs. These compounds at best had only marginal effects on the transcription of glutathione transferase (Ya+Yc) messenger RNAs. The half-life of cytochrome P-450 (b+e) messenger RNA was estimated to be 3–4 hr, whereas that for glutathione transferase (Ya+Yc) was found to be 8-9 hr. Administration of phenobarbitone enhanced the half-life of glutathione transferase (Ya+Yc) messenger RNA by nearly two fold. It is suggested that while transcription activation may play a primary role in the induction of cytochrome P-450 (b+e), the induction of glutathione transferase (Ya+Yc) may essentially involve stabilization of the messenger RNAs.
Resumo:
3,5-Diethoxycarbonyl-1,4-dihydrocollidine (DDC) is a porphyrinogenic agent and is a powerful inducer of δ-aminolaevulinate synthetase, the first and rate-limiting enzyme of the haem-biosynthetic pathway, in mouse liver. However, DDC strikingly inhibits mitochondrial as well as microsomal haem synthesis by depressing the activity of ferrochelatase in vivo. The drug on repeated administration to female mice has been found to elicit hypertrophic effects in the liver microsomes initially, but the effects observed at later stages denote either hyperplasia or increase in polyploidal cells. The microsomal protein concentration shows a striking decrease with repeated doses of the drug. The rate of microsomal protein synthesis in vivo as well as in vitro shows an increase with two injections of DDC but decreases considerably with repeated administration of the drug. The activities of NADPH-cytochrome creductase and ribonuclease are not affected in the liver microsomes of drug-treated animals when expressed per mg of microsomal protein. DDC has also been found to cause degradation of microsomal haem, which is primarily responsible for the decrease in cytochrome P-450 content. The drug also leads to a decrease in mitochondrial cytochrome c levels due to inhibition of haem synthesis and also due to degradation of mitochondrial haem at later stages. The biochemical effects of the drug are compared and discussed with those reported for allylisopropylacetamide and phenobarbital.
Resumo:
The synthesis of cytochrome P-450 (phenobarbital inducible) and cytochrome P-448 (3-methylcholanthrene inducible) have been studied in rat liver in vivo and in the wheat germ cell-free system using anti- cytochrome P-450 and anti-cytochrome P-448 antibodies. The major mature forms synthesized in vivo correspond to a molecular weight of 47,000 for cytochrome P-450 and 53,000 for cytochrome P-448. Translation of poly(A)-containing RNA from phenobarbital-treated rats in the wheat germ cell-free system reveals that the cell-free product immunoprecipitated with anti-cytochrome P-450 antibody has a molecular weight close to 47,000. In the case of 3-methylcholanthrene, the cell- free product immunoprecipitated with anti-cytochrome P-448 antibody shows a molecular weight around 59,000. Significant conversion of the 59,000 species to the 53,000 species can be demonstrated when the translation is carried out in the presence of microsomal membranes isolated from rat liver. Phenobarbital and 3-methylcholanthrene enhance the translatable messenger.
Resumo:
Molecular dynamics simulations are reported on the structure and dynamics of n-decane and 3-methylpentane in zeolite NaY. We have calculated several properties such as the center of mass-center of mass rdf, the end-end distance distribution, bond angle distribution and dihedral angle distribution. We have also analysed trajectory to obtain diffusivity and velocity autocorrelation function (VACF). Surprisingly, the diffusivity of 3-methylpentane which is having larger cross-section perpendicular to the long molecular axis is higher than n-decane at 300 K. Activation energies have been obtained from simulations performed at 200 K, 300 K, 350 K, 400 K and 450 K in the NVE ensemble. These results can be understood in terms of the previously known levitation effect. Arrhenious plot has higher value of slope for n-decane (5 center dot 9 kJ/mol) than 3-methylpentane (3 center dot 7 kJ/mol) in agreement with the prediction of levitation effect.
Resumo:
Inhibitors of heme biosynthesis such as CoCl2, 3-amino-1,2,4-triazole, and thioacetamide block the 3-methylcholanthrene-mediated induction of cytochrome P-450 (c + d) messenger RNAs and their transcription in rat liver. This effect is specific, since the messenger RNA levels for albumin and glutathione transferase (Ya + Yc) and their transcription are not significantly influenced under conditions of heme depletion. Exogenous administration of heme at very low doses (50 μg/100 g body wt) is able to completely counteract the effects of the heme biosynthetic inhibitors on cytochrome P-450 (c + d) messenger RNA levels and their transcription. This constitutes a direct proof for the role of heme as a positive regulator of cytochrome P-450 gene transcription.
Resumo:
Administration of 3-methylcholanthrene (MC) to rats results in a striking increase in the transcription of cytochrome P-450 (c+d) messenger RNA with isolated nuclei, which is blocked by the simultaneous administration of cobalt chloride, an inhibitor of heme biosynthesis. Transcription of cytochrome P-450 (c+d) mRNAs with nuclei isolated from MC treated rats shows a linear increase with time of incubation, whereas it shows a progressive decrease with incubation time in the case of nuclei isolated from MC+CoCl2 treated rats. Addition of heme in vitro (10−6M) to the latter nuclei results in a significant counteraction of the decreased cytochrome P-450 (c+d) mRNA transcription. The inhibition in transcription rates observed in MC+CoCl2 treated rat liver nuclei is more pronounced with the seventh exon probe than with the second exon probe. Once again, in vitro heme addition can counteract the inhibition observed with both the probes. Since run off transcription with isolated nuclei represents essentially elongation of the initiated transcripts, the data obtained can be interpreted on the basis that heme regulates cytochrome P-450 gene transcription elongation.
Resumo:
CI2HI4N206, Mr=282"3, orthorhombic,P21212 t, a = 10.412 (2), b = 14.936 (2), c =16.651(3),/k, V=2589.46A 3, Z--8, Din= 1.450, D x = 1.447 Mg m -3, 2(Cu Kct) = 1.5418/~, # =0.902mm -~, F(000)-- 1184.00, T= 293 K, R = 0.039, wR--0.038 for 2548 unique reflections with F > 3a(F). The two crystallographically independent molecules in the asymmetric unit have similar geome-tries with the ribose ring having an O(4')-exo, C(4')-endo pucker and the uracil base in the anti conformation.The geometry about the exocyclic C(4')-C(5') bond in both molecules is gauche-gauche. The dioxolane ring assumes twist conformations in both molecules.
Resumo:
Metabolism of l-menthol in rats was investigated both in vivo and in vitro. Metabolites isolated and characterized from the urine of rats after oral administration (800 mg/kg of body weight/day) of l-menthol were the following: p-menthane-3,8-diol (II), p-menthane-3,9-diol (III), 3,8-oxy-p-menthane-7-carboxylic acid (IV), and 3,8-dihyroxy-p-menthane-7-carboxylic acid (V). In vivo, the major urinary metabolites were compounds II and V. Repeated oral administration (800 mg/kg of body weight/day) of l-menthol to rats for 3 days resulted in the increase of both liver microsomal cytochrome P-450 content and NADPH-cytochrome c reductase activity by nearly 80%. Further treatment (for 7 days total) reduced their levels considerably, although the levels were still higher than the control values. Both cytochrome b5 and NADH-cytochrome c reductase levels were not changed during the 7 days of treatment. Rat liver microsomes readily converted l-menthol to p-menthane-3,8-diol (II) in the presence of NADPH and O2. This activity was significantly higher in microsomes obtained from phenobarbital (PB)-induced rats than from control microsomal preparations, whereas 3-methylcholanthrene (3-MC)-induced microsomes failed to convert l-menthol to compound II in the presence of NADPH and O2. l-Menthol elicited a type I spectrum with control (Ks = 60.6 microM) and PB-induced (Ks = 32.3 microM) microsomes whereas with 3MC-induced microsomes it produced a reverse type I spectrum.
Resumo:
A user friendly interactive computer program, CIRDIC, is developed which calculates the molar ellipticity and molar circular dichroic absorption coefficients from the CD spectrum. This, in combination with LOTUS 1-2-3 spread sheet, will give the spectra of above parameters vs wavelength. The code is implemented in MicroSoft FORTRAN 77 which runs on any IBM compatible PC under MSDOS environment.
Resumo:
A cDNA clone has been isolated from a chicken liver library prepared against messenger RNA isolated after chronic estradiol-17β treatment. The clone, pP-450 IA - 61, has an insert of 900nt and the sequence shows high homology to CYPIA2 subfamily from four other species. A single injection of estradiol-17β to immature chicken results in a striking induction of mRNA hybridizing to labeled pP-450IA - 61. The probe also hybridizes to mRNA induced by 3 — methylcholanthrene in chicken. These results offer direct proof for the similarity in the mode of action at the transcriptional level of polyaromatic hydrocarbons and estrogenic compounds.
Resumo:
The presence of redox systems in microsomes of brown adipose tissue (BAT) in cold exposed rats was investigated and compared with liver. BAT microsomes showed high activity of lipid peroxidation measured both by the formation of malondialdehyde (MDA) and by oxygen uptake. NADH and NADPH dependent cytochrome c reductase activity were present in both BAT and liver microsomes. Aminopyrine demethylase and aniline hydroxylase activities, the characteristic detoxification enzymes in liver microsomes could not be detected in BAT microsomes. BAT minces showed very poor incorporation of [1-14C]acetate and [2-14C]-mevalonate in unsaponifiable lipid fraction compared to liver. Biosynthesis of cholesterol and ubiquinone, but not fatty acids, and the activity of 3-hydroxy-3-methyl glutaryl CoA reductase appear to be very low in BAT. Examination of difference spectra showed the presence of only cytochrome b 5 in BAT microsomes. In addition to the inability to detect the enzyme activities dependent on cytochrome P-450, a protein with the characteristic spectrum, molecular size in SDS-PAGE and interaction with antibodies in double diffusion test, also could not be detected in BAT microsomes. The high activity of lipid peroxidation in microsomes, being associated with large oxygen uptake and oxidation of NADPH, will also contribute to the energy dissipation as heat in BAT, considered important in thermogenesis.
Resumo:
Fabrication of 0.65Pb(Mg1/3Nb2./3)O-3-0.35PbTiO(3) (PMN-PT) nanoparticles with an average size of about 40 nm and their phase transformation behavior from pyrochlore to perovskite phase is investigated. A novel sol-gel method was used for the synthesis of air-stable and precipitate-free diol-based sol of PMN-PT which was dried and partially calcined at 450 degrees C for 1 h to decompose organics and bring down the free energy barrier for perovskite crystallization and then finally annealed in the temperature range 600 to 700 degrees C. Annealed at around 700 degrees C for 1 h, PMN-PT gel powder exhibited nanocrystalline morphology with perovskite phase as confirmed by the transmission electron microscopy and X-ray diffraction techniques. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677974]