57 resultados para 3-R-concept
em Indian Institute of Science - Bangalore - Índia
Resumo:
C12H8BT2O4. monoclinic, P12(1)/cl (No. 14), a = 11.546(2) Angstrom, b = 6.885(4) Angstrom,= 15.949(3) Angstrom, beta = 101.75(2)degrees, V= 1241.3 Angstrom(3), Z = 4, p(m) = 2.040 g.cm(-3), R-all(F) = 0.039, wR(all)(F) = 0.043, T = 300 K.
Resumo:
The reactions of As-chlorocyclotriphosphazane [EtNPCl], with phenols or trifluoroethanol yield the respective aryloxy- or trifluoroethoxy-containingX 3-cyclotriphosphazanes [EtNP(OR)]3 (R = C6H4Br-4 (2),C 6H5 (3C,6 H3-Mez-3,5 (4), C6H3Mez-2,6 (5), CH2CF3 (6)) as their cis-transisomericmixtures. The products have beencharacterized by IRand NMRspectroscopy. Thecrystalstructuresofboth thecis (2a) and trans(2b) isomer_softhep-bromophenoxy derivative have been determined by X-ray diffraction. Crystal data for 2a: triclinic, P1, a = 9.872(4) A, b = 13.438(6) A, c = 13.548(8) A, CY = 117.02(5)', 0 = 96.00(6)', y = 105.38(4)O, Z = 2, final R = 0.080. Crystal data for 2b: monoclinic, P21/n, a = 12.721(6) A, b = 13.468(7) A, c = 17.882(5) A, /3 = 101.62(3)O, Z = 4, final R = 0.066. The cis isomer exhibits a chair-triaxial conformation and the trans isomer a boat-triaxial conformation. Conformational preferences of X3-cyclotriphosphazanes have been probed by both MNDO and ab initio calculations on model systems [HNPXIp (X = H, F). In addition to vicinal lone pair repulsions, negative hyperconjugative interactions involving the nitrogen lone pairs and adjacent P-X Q* orbitals are found to be important (especially when X is an electronegative substituent) in determining the conformational preferences of X3-cyclotriphosphazanes. The calculations also show that the axial - equatorial conversion at phosphorus has a large activation barrier in these systems
Resumo:
Reactions of [Rh(COD)Cl](2) with the ligand RN(PX(2))(2) (1: R=C6H5; X=OC6H5) give mono- or disubstituted complexes of the type [Rh-2(COD)Cl-2{eta(2)-C6H5N(P(OC6H5)(2))(2)}-] or [RhCl{eta(2)-C6H5N(P(OC6H5)(2))(2)}](2), depending on the reaction conditions. Reaction of 1 with [Rh(CO)(2)Cl](2) gives the symmetric binuclear complex, [Rh(CO)Cl{mu-C6H5N(P(OC6H5)(2))(2)}], whereas the same reaction with 2 (R=CH3; X=OC6H5) leads to the formation of an asymmetric complex of the type [Rh(CO)(mu-CO)Cl{mu-CH3N(P(OC6H5)(2))(2)}] containing both terminal and bridging CO groups. Interestingly the reaction of 3 (R=C6H5, X = OC6H4Br-p) with either [Rh(COD)Cl](2) or [Rh(CO)(2)Cl](2) leads only to the formation of the chlorine bridged binuclear complex, [RhCl{eta(2)-C6H5N(P(OC6H4Br-p)(2))(2)}](2). The structural elucidation of the complexes was carried out by elemental analyses, IR and P-31 NMR spectroscopic data.
Resumo:
Treatment of the lambda(3)-cyclotriphosphazanes, cis-{EtNP(OR)}(3) [R = C6H4Br-4 (L-1) or C6H4Br-2 (L-2)] with [Mo(CO)(4)(NBD)] (NBD = norbornadiene) yields the mononuclear complexes [Mo(CO)(4)L-1] (1) and [Mo(CO)(4)L-2] (2). which have been characterised by IR, NMR (P-31 and H-1) and FAB mass spectral data. The structure of 1 has been confirmed by single crystal X-ray analysis. The structural and conformational changes brought about by complexation are discussed in terms of a bonding model based on "negative hyperconjugation". (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The lambda(3)-cyclotriphosphazanes, [EtNP(OR)](3) [R = 2,6-Me2C6H3 (1), 4-BrC6H4 (2), or CH2CF3(3)], on treatment with tetrachloro-1,2-benzoquinone (TCB) give the lambda(5)-cyclodiphosphazanes, [EtNP(O2C6Cl4)(OR)][EtNP(O2C6Cl4){N(Et)P(OR)(2)}] (5-7) by an unusual ring contraction-rearrangement. The reaction of the mixed substituent lambda(3)-cyclotriphosphazane, [(EtN)(3)P-3(OR)(2)(OR')] [R = 2,6-Me2C6H3, R' = 4-BrC6H4] (4), with TCB gives the lambda(5)-cyclodiphosphazane, [EtNP(O2C6Cl4)(OR')][EtNP(O2C6Cl4){N(Et)P(OR)(2)}] (8), in which 4-bromophenoxide resides on one of the ring phosphorus atoms. The lambda(3)-bicyclic tetraphosphapentazane, (EtN)(5)P-4(OPh)(2), on treatment with TCB undergoes a double ring contraction-rearrangement to give the lambda(5)-cyclodiphosphazane, (EtN)[(EtN)(2)P-2(O2C6Cl4)(2)(OPh)](2) (9). Variable-temperature and high-field P-31 NMR studies indicate the presence of more than one isomer in solution for the rearranged products 5-9. The solid state structure of 8 reveals a trans arrangement of the substituents with respect to the P2N2 ring in contrast to the gauche arrangement observed for 5.
Resumo:
A cylindrical pore of similar to 7.5 angstrom diameter containing a one-dimensional water wire, within the confines of a hydrophobic channel lined with the valine side chain, has been observed in crystals of the peptide Boc-D-Pro-Aib-Val-Aib-Val-OMe (1) (Raghavender et al., 2009, 2010). The synthesis and structural characterization in crystals of three backbone homologated analogues Boc-D-Pro-Aib-beta(3)(R) Val-Aib-Val-OMe (2), Boc-D-Pro-Aib-gamma(4)(R)Val-Aib-Val-OMe (3), Boc-D-Pro-Aib-gamma(4)(S)Val-Aib-Val-OMe (4) are described. Crystal structures of peptides 2, 3 and 4 reveal close-packed arrangements in which no pore was formed. In peptides 2 and 3 the N-terminus D-Pro-Aib segment adopted conformations closely related to Type II' beta-turns, while residues 2-4 form one turn of an alpha beta right-handed C-11 helix in 2 and an alpha gamma C-12 helix in 3. In peptide 4, a continuous left-handed helical structure was observed with the D-Pro-Aib segment forming a Type III' beta-turn, followed by one turn of a left-handed alpha gamma C-12 helix. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP(3)) receptors (InsP(3)R) in a form of intrinsic plasticity by asking if InsP(3)R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of D-myo-InsP(3) in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP 3 concentration, emphasizing the graded dependence of such plasticity on InsP(3)R activation. Mechanistically, we found that this InsP(3)-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP(3)Rs, the influx of calcium through N-methyl-D-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP(3)Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis.
Resumo:
Complexes [Ru2O(O2CR)(2)(1-MeIm)(6)](ClO4)(2) (la-c), [Ru2O(O2CR)(2)(ImH)(6)](ClO4)(2) (2a,b), and [Ru2O(O2CR)(2)(4-MeImH)(6)](ClO4)(2) (3a,b) with a (mu-oxo)bis(mu-carboxylato)diruthenium(III) core have been prepared by reacting Ru2Cl(O2CR)(4) with the corresponding imidazole base, viz. 1-methylimidazole (1-MeIm), imidazole (ImH), and 4-methylimidazole (4-MeImH) in methanol, followed by treatment with NaClO4 in water (R: Me, a; C6H4-p-OMe, b; C6H4-p-Me, c). Diruthenium(III,IV) complexes [Ru2O(O2CR)(2)(1-MeIm)(6)](ClO4)(3) (R: Me, 4a; C6H4-p-OMe, 4b; C6H4-p-Me, 4c) have been prepared by one-electron oxidation of 1 in MeCN with K2S2O8 in water. Complexes la, 2a . 3H(2)O, and 4a . 1.5H(2)O have been structurally characterized. Crystal data for the complexes are as follows: la, orthorhombic, P2(1)2(1)2(1), a = 7.659(3) Angstrom, b = 22.366(3) Angstrom, c = 23.688(2) Angstrom, V = 4058(2) Angstrom(3), Z = 4, R = 0.0475, and R-w = 0.0467 for 2669 reflections with F-o > 2 sigma(F-o); 2a . 3H(2)O, triclinic,
, a = 13.735(3) Angstrom, b = 14.428(4) Angstrom, c = 20.515(8) Angstrom, alpha = 87.13(3)degrees, beta = 87.61(3)degrees, gamma = 63.92(2)degrees, V = 3646(2) Angstrom(3), Z = 4, R = 0.0485 and R-w = 0.0583 for 10 594 reflections with F-o > 6 sigma(F-o); 4a . 1.5H(2)O triclinic,
, a = 11.969(3) Angstrom, b = 12.090(6) Angstrom, c = 17.421(3) Angstrom, alpha = 108.93(2)degrees, beta = 84.42(2)degrees, gamma = 105.97(2)degrees, V = 2292(1) Angstrom(3), Z = 2, R = 0.0567, and R-w = 0.0705 for 6775 reflections with F-o > 6 sigma(F-o). The complexes have a diruthenium unit held by an oxo and two carboxylate ligands, and the imidazole ligands occupy the terminal sites of the core. The Ru-Ru distance and the Ru-O-oxo-Ru angle in la and 2a . 3H(2)O are 3.266(1), 3.272(1) Angstrom and 122.4(4), 120.5(2)degrees, while in 4a . 1.5H(2)O these values are 3.327(1) Angstrom and 133.6(2)degrees. The diruthenium(III) complexes 1-3 are blue in color and they exhibit an intense visible band in the range 560-575 nm. The absorption is charge transfer in nature involving the Ru(III)-d pi and O-oxo-p pi orbitals. The diruthenium(III,IV) complexes are red in color and show an intense band near 500 nm. The diruthenium(III) core readily gets oxidized with K2S2O8 forming quantitatively the diruthenium(III,IV) complex. The visible spectral record of the conversion shows an isosbestic point at 545 nm for 1 and at 535 nm for 2 and 3. Protonation of the oxide bridge by HClO4 in methanol yields the [Ru-2(mu-OH)(mu-O2CR)(2)](3+) core. The hydroxo species shows a visible band al 550 nm. The pK(a) value for la is 2.45. The protonated species are unstable. The 1-MeIm species converts to the diruthenium(III,IV) core, while the imidazole complex converts to [Ru(ImH)(6)](3+) and some uncharacterized products. Complex [Ru(ImH)(6)](ClO4)(3) has been structurally characterized. The diruthenium(III) complexes are essentially diamagnetic and show characteristic H-1 NMR spectra indicating the presence of the dimeric structure in solution. The diruthenium(III,IV) complexes are paramagnetic and display rhombic EPR spectral features. Complexes 1-3 are redox active. Complex 1 shows the one-electron reversible Ru-2(III)/(RuRuIV)-Ru-III, one-electron quasireversible (RuRuIV)-Ru-III/Ru-2(IV), and two-electron quasireversible Ru-2(III)/Ru-2(II) couples near 0.4, 1.5, and -1.0 V vs SCE In MeCN-0.1 M TBAP, respectively, in the cyclic and differential pulse voltammetric studies. Complexes 2 and 3 exhibit only reversible Ru-2(III)/(RuRuIV)-Ru-III and the quasireversible (RuRuIV)-Ru-III/Ru-2(IV) couples near 0.4 and 1.6 V vs SCE, respectively, The observation of a quasireversible one-step two-electron transfer reduction process in 1 is significant considering its relevance to the rapid and reversible Fe-2(III)/Fe-2(II) redox process known for the tribridged diiron core in the oxy and deoxy forms of hemerythrin.
Resumo:
Double-diffusive finger convection occurs in many natural processes.The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (R-rho) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (Ra-T) has been systematically varied from 7x10(3) to 7x10(8). Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as Ra-T-1/3. Velocity in the finger varies as Ra(T)1/3/R-rho. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.
Resumo:
MeNCS undergoes insertion into the copper(I)-aryloxide bond to form [N-methylimino(aryloxy)methanethiolato]-copper(I) complexes. This insertion occurs in the absence of ancillary ligands unlike the analogous insertion of PhNCS. The reaction with 4-methylphenoxide results in the formation of hexakis[[N-methylimino(4-methylphenoxy) methanethiolato]copper(I)] (1), which has been characterized by X-ray crystallography. Crystal data for 1: hexagonal , a = 10.088(2) Angstrom, b = 11.302(1) Angstrom, c = 17.990(2) Angstrom, alpha = 94.06(1)degrees, beta = 95.22(2)degrees, gamma = 103.94(1)degrees, Z = 2, V = 1974.4(7) Angstrom(3), R = 0.0361. In the presence of of PPh(3), the insertion reaction becomes reversible. This allows the exchange of the heterocumulene MeNCS or the aryloxy group in these molecules with another heterocumulene or a phenol, respectively, when catalytic amounts of PPh(3) are added. Oligomers with exchanged heterocumulmes and phenols could be characterized by independent synthesis.
Resumo:
Crystalline complexes of succinic acid with DL- and L-lysine have been prepared and analysed by X-ray diffraction. DL-Lysine complex: C6HIsN202 + 1 2- 1 ~C4H404 .~C4H604, Mr -- 264"2, PI, a = 5"506 (4), =8.070(2), c=14.089(2) A,, a=92.02(1), /3= 100"69 (3), y = 95"85 (3) ~>, Z = 2, Dx = 1"44 g cm -3, R = 0.059 for 2546 observed reflections. Form I of the e-lysine complex: C6HIsN20-, ~ .C4H504, Mr = 264.2, P1, a = 5" 125 (2), b = 8"087 (1), c = 8"689 (1) A,, a = 112.06 (1), /3 = 99.08 (2), y = 93"77(2) °, Z--l, D,,,=1"34(3), Dx=l"34gcm 3 R = 0.033 for 1475 observed reflections. Form II of + I 2- the e-lysine complex: C6H15N202 .,iC4H404 .- 1 I ") 4C4H604.4(C4HsO4""H'"CaH404)" , Mr = 264"2, P1, a = 10.143 (4), b = 10.256 (2), c = 12"916 (3) A,, a = 105.00 (2),/3 = 99-09 (3), y = 92"78 (3)::, Z = 4, Dm= 1"37(4), D,.= 1.38gcm 3, R=0.067 for 2809 observed reflections. The succinic acid molecules in the structures exhibit a variety of ionization states. Two of the lysine conformations found in the complexes have been observed for the first time in crystals containing lysine. Form II of the L-lysine complex is highly pseudosymmetric. In all the complexes, unlike molecules aggregate into separate alternating layers. The basic element of aggregation in the lysine layer in the complexes is an S2-type head-to-tail sequence. This element combines in different ways in the three structures. The basic element of aggre gation in the succinic acid layer in the complexes is a hydrogen-bonded ribbon. The ribbons are interconnected indirectly through amino groups in the lysine layer.
Resumo:
Oxygen transfer rate and the corresponding power requirement to operate the rotor are vital for design and scale-up of surface aerators. Present study develops simulation or scale-up criterion correlating the oxygen transsimulation fer coefficient and power number along with a parameter governing theoretical power per unit volume (X, which is defined as equal to (FR1/3)-R-4/3, where F and R are impellers' Fronde and Reynolds number, respectively). Based on such scale-up criteria, design considerations are developed to save energy requirements while designing square tank surface aerators. It has been demonstrated that energy can be saved substantially if the aeration tanks are run at relatively higher input powers. It is also demonstrated that smaller sized tanks are more energy conservative and economical when compared to big sized tanks, while aerating the same volume of water, and at the same time by maintaining a constant input power in all the tanks irrespective of their size. An example illustrating how energy can be reduced while designing different sized aerators is given. The results presented have a wide application in biotechnology and bioengineering areas with a particular emphasis on the design of appropriate surface aeration systems.
Resumo:
Oxygen transfer rate and the corresponding power requirement to operate the rotor are vital for design and scale-up of surface aerators. Present study develops simulation or scale-up criterion correlating the oxygen transsimulation fer coefficient and power number along with a parameter governing theoretical power per unit volume (X, which is defined as equal to (FR1/3)-R-4/3, where F and R are impellers' Fronde and Reynolds number, respectively). Based on such scale-up criteria, design considerations are developed to save energy requirements while designing square tank surface aerators. It has been demonstrated that energy can be saved substantially if the aeration tanks are run at relatively higher input powers. It is also demonstrated that smaller sized tanks are more energy conservative and economical when compared to big sized tanks, while aerating the same volume of water, and at the same time by maintaining a constant input power in all the tanks irrespective of their size. An example illustrating how energy can be reduced while designing different sized aerators is given. The results presented have a wide application in biotechnology and bioengineering areas with a particular emphasis on the design of appropriate surface aeration systems.
Resumo:
The structure of cadaverine dihydrochloride monohydrate has been determined by X-ray crystallography with the following features: NH3+(CH2)5NH3+.2Cl-.H2O, formula weight 191.1, monoclinic, P2, a = 11.814(2) angstrom, b = 4.517(2) angstrom, c = 20.370(3) angstrom, beta = 106.56-degrees(1): V = 1041.9(2) angstrom3, lambda = 1.541 angstrom; mu = 53.4 1; T = 296-degrees; Z = 4, D(x) = 1.218 g.cm-3, R = 0.101 for 1383 observed reflections. The crystal is highly pseudosymmetric with 2 molecules of cadaverine, 4 chloride ions and 2 partially disordered water molecules present in the asymmetric unit. Though both the cadaverine molecules in the asymmetric unit have an all trans conformation, the carbon backbones are slightly bent. Between the concave surfaces of two bent cadaverine molecules exists water channels all along the short b axis. The water molecules present in the channels are partially disordered
Resumo:
The aryloxy(alkoxy)cyclotriphosphazenes N3P3(OR)6�m(OC6H4Me-p)n(R = Me, n= 1�3; R = Et or CH2Ph, n= 3) rearrange on heating to give trioxocyclotriphosphazanes; the di- and mono-methoxy derivatives, N3P3(OMe)6�n(OC6H4Me-p)n(n= 4 or 5), yield dioxophosphaz-1-enes and an oxophosphazadiene respectively. The 1H, 13C and 31P NMR data for the starting materials and the products are presented. No evidence has been found for partially rearranged products. The geometrical disposition of the aryloxy groups in the starting material is retained in the rearranged products. Some aspects of the mechanism of the thermal rearrangement are discussed.