5 resultados para 3 different areas

em Indian Institute of Science - Bangalore - Índia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Story understanding involves many perceptual and cognitive subprocesses, from perceiving individual words, to parsing sentences, to understanding the relationships among the story characters. We present an integrated computational model of reading that incorporates these and additional subprocesses, simultaneously discovering their fMRI signatures. Our model predicts the fMRI activity associated with reading arbitrary text passages, well enough to distinguish which of two story segments is being read with 74% accuracy. This approach is the first to simultaneously track diverse reading subprocesses during complex story processing and predict the detailed neural representation of diverse story features, ranging from visual word properties to the mention of different story characters and different actions they perform. We construct brain representation maps that replicate many results from a wide range of classical studies that focus each on one aspect of language processing and offer new insights on which type of information is processed by different areas involved in language processing. Additionally, this approach is promising for studying individual differences: it can be used to create single subject maps that may potentially be used to measure reading comprehension and diagnose reading disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Equations for solid-state decompositions which are controlled by the phase-boundary movement and nucleation have been examined using ammonium perchlorate/polystyrene propellant decomposition at 503 K and 533 K. It was found that 3 different equations governed by the nucleation process show a good fit of data at these temperatures. However, the best fit was obtained for the following Avrami-Erofeev equation, [-In (1 - α]1/4=kt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current scientific research is characterized by increasing specialization, accumulating knowledge at a high speed due to parallel advances in a multitude of sub-disciplines. Recent estimates suggest that human knowledge doubles every two to three years – and with the advances in information and communication technologies, this wide body of scientific knowledge is available to anyone, anywhere, anytime. This may also be referred to as ambient intelligence – an environment characterized by plentiful and available knowledge. The bottleneck in utilizing this knowledge for specific applications is not accessing but assimilating the information and transforming it to suit the needs for a specific application. The increasingly specialized areas of scientific research often have the common goal of converting data into insight allowing the identification of solutions to scientific problems. Due to this common goal, there are strong parallels between different areas of applications that can be exploited and used to cross-fertilize different disciplines. For example, the same fundamental statistical methods are used extensively in speech and language processing, in materials science applications, in visual processing and in biomedicine. Each sub-discipline has found its own specialized methodologies making these statistical methods successful to the given application. The unification of specialized areas is possible because many different problems can share strong analogies, making the theories developed for one problem applicable to other areas of research. It is the goal of this paper to demonstrate the utility of merging two disparate areas of applications to advance scientific research. The merging process requires cross-disciplinary collaboration to allow maximal exploitation of advances in one sub-discipline for that of another. We will demonstrate this general concept with the specific example of merging language technologies and computational biology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In species-rich assemblages, differential utilization of vertical space can be driven by resource availability. For animals that communicate acoustically over long distances under habitat-induced constraints, access to an effective transmission channel is a valuable resource. The acoustic adaptation hypothesis suggests that habitat acoustics imposes a selective pressure that drives the evolution of both signal structure and choice of calling sites by signalers. This predicts that species-specific signals transmit best in native habitats. In this study, we have tested the hypothesis that vertical stratification of calling heights of acoustically communicating species is driven by acoustic adaptation. This was tested in an assemblage of 12 coexisting species of crickets and katydids in a tropical wet evergreen forest. We carried out transmission experiments using natural calls at different heights from the forest floor to the canopy. We measured signal degradation using 3 different measures: total attenuation, signal-to-noise ratio (SNR), and envelope distortion. Different sets of species supported the hypothesis depending on which attribute of signal degradation was examined. The hypothesis was upheld by 5 species for attenuation and by 3 species each for SNR and envelope distortion. Only 1 species of 12 provided support for the hypothesis by all 3 measures of signal degradation. The results thus provided no overall support for acoustic adaptation as a driver of vertical stratification of coexisting cricket and katydid species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High wind poses a number of hazards in different areas such as structural safety, aviation, and wind energy-where low wind speed is also a concern, pollutant transport, to name a few. Therefore, usage of a good prediction tool for wind speed is necessary in these areas. Like many other natural processes, behavior of wind is also associated with considerable uncertainties stemming from different sources. Therefore, to develop a reliable prediction tool for wind speed, these uncertainties should be taken into account. In this work, we propose a probabilistic framework for prediction of wind speed from measured spatio-temporal data. The framework is based on decompositions of spatio-temporal covariance and simulation using these decompositions. A novel simulation method based on a tensor decomposition is used here in this context. The proposed framework is composed of a set of four modules, and the modules have flexibility to accommodate further modifications. This framework is applied on measured data on wind speed in Ireland. Both short-and long-term predictions are addressed.