151 resultados para 2,3-dicloro-6,7-dinitroquinoxalina
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new strategy for the total synthesis of methyl 8-methoxy-2,2-dimethyl-7-oxo-1,2,3,5,6,7-hexahydro-s-indacene-4-carboxylate 4, a key intermediate in the synthesis of illudalanes, is reported. The key step in this strategy is a new method of preparation of indanones from tetralones. Thus, the furfurylidene derivative of 6-methoxy-3,4-dihydronaphthalen-1-(2H)-one is oxidised to the dicarboxylic acid 9a which is cyclodehydrated to methyl 7-methoxy-1-oxoindan-4-carboxylate 10. Similar reactions on the tetrahydronaphthalenone 25, obtained from 6-methoxy-1,2,3,4-tetrahydronaphthalene-7-carbaldehyde 11 by sequential transformations including a regiospecific benzylic oxidation resulted in the hexahydro-s-indacenone 4, thus completing a formal synthesis of illudinine 1.
Resumo:
he ortho methoxycarbonyl substituent constitutes a sole exception in the ring closure reactions of ortho substituted aryl azides, as it provides no rate acceleration to this reaction. Pyrolysis of ''azido-meta-hemipinate'', an aryl azide containing such a substituent, led us to the title compound, a new azepinylidenepyridylacetic ester, whose structure has been established unambiguously by a single crystal X-ray diffraction study. This is the first report of a reaction involving both a ring expansion to an azaheptafulvalene and a ring extrusion to a pyridyl ring residue.
Resumo:
C17H19N302, monoclinic, P21, a = 5.382 (1), b = 17.534(4), c = 8.198(1)/L ,8 = 100.46(1) °, Z= 2, d,, = 1.323, dc= 1.299 Mg m-3, F(000) = 316, /~(Cu .Ka) = 0.618 mm -1. R = 0.052 for 1284 significant reflections. The proline-containing cispeptide unit which forms part of a six-membered ring deviates from perfect planarity. The torsion angle about the peptide bond is 3.0 (5) ° and the peptide bond length is 1.313 (5)A. The conformation of the proline ring is Cs-Cf~-endo. The crystal structure is stabilized by C-H... O interactions.
Resumo:
C17H19N302, monoclinic, P21, a = 5.382 (1), b = 17.534(4), c = 8.198(1)/L ,8 = 100.46(1) °, Z= 2, d,, = 1.323, dc= 1.299 Mg m-3, F(000) = 316, /~(Cu .Ka) = 0.618 mm -1. R = 0.052 for 1284 significant reflections. The proline-containing cispeptide unit which forms part of a six-membered ring deviates from perfect planarity. The torsion angle about the peptide bond is 3.0 (5) ° and the peptide bond length is 1.313 (5)A. The conformation of the proline ring is Cs-Cf~-endo. The crystal structure is stabilized by C-H... O interactions.
Resumo:
In the crystal structure of the title salt, C7H7Cl2N2O2+ center dot Cl-, the chloride anions participate in extensive hydrogen bonding with the aminium cations and indirectly link the molecules through multiple N+-H center dot center dot center dot Cl- salt bridges. There are two independent molecules in the asymmetric unit, related by a pseudo-inversion center. The direct intermolecular coupling is established by C-H center dot center dot center dot O, C-H center dot center dot center dot Cl and C-Cl center dot center dot center dot Cl- interactions. A rare three-center (donor bifurcated) C-H center dot center dot center dot (O,O) hydrogen bond is observed between the methylene and nitro groups, with a side-on intramolecular component of closed-ring type and a head-on intermolecular component.
Resumo:
The interaction of five crown ethers, 15-crown-5, 18-crown-6, benzo-15-crown-5, dibenzo-l8-crown-6, and dibenzo-24-crown-8 with 2, 3, 5, 6 - tetracyano pyrazine has been studied by spectroscopic methods. The association constants and thermodynamic parameters of the 1:1 complexes formed by donor ethers with the acceptor have been evaluated. There is an indication that oxygens of the ethers and aryl part of the ether act cooperatively in binding of the acceptor.
Resumo:
The crystal structures of three conformationally locked esters, namely the centrosymmetric tetrabenzoate of all-axial per-hydronaphthalene- 2,3,4a, 6,7,8a-hexaol, viz. trans-4a, 8a-dihydroxyperhydronaphthalene-2,3,6,7-tetrayl tetrabenzoate, C38H34O10, and the diacetate and dibenzoate of all-axial perhydronaphthalene-2,3,4a, 8a-tetraol, viz. (2R*,3R*,4aS*,8aS*)-4a, 8a-dihydroxyperhydronaphthalene-2,3-diyl diacetate, C-14-H22O6, and (2R*, 3R*, 4aS*, 8aS*)-4a, 8a-dihydroxyperhydronaphthalene- 2,3-diyl dibenzoate, C24H26O6, have been analyzed in order to examine the preference of their supramolecular assemblies towards competing inter-and intramolecular O-H center dot center dot center dot O hydrogen bonds. It was anticipated that the supramolecular assembly of the esters under study would adopt two principal hydrogen-bonding modes, namely one that employs intermolecular O-H center dot center dot center dot O hydrogen bonds (mode 1) and another that sacrifices those for intramolecular O-H center dot center dot center dot O hydrogen bonds and settles for a crystal packing dictated by weak intermolecular interactions alone (mode 2). Thus, while the molecular assembly of the two crystalline diacyl derivatives conformed to a combination of hydrogen-bonding modes 1 and 2, the crystal packing in the tetrabenzoate preferred to follow mode 2 exclusively.
Resumo:
A conformationally locked fluoropentol undergoes an interesting transformation to (trans,anti,trans,anti,trans)-perhydro-2,3,4a,6,7,8a-naphthalenehexol essentially under conditions of base-induced transesterification. The proposed rationale for the observed metamorphosis involves a nucleophilic displacement of fluoride, and subsequent stereo- and regioselective anti-Furst-Plattner-type ring-opening of the epoxide thus formed.
Resumo:
Schmidt reaction of 5-methoxy or 7-methoxyindan-1-ones or their derivatives results exclusively in isocarbostyrils which are converted into 6-methoxy or 8-methoxyisoquinolines in good yields. This strategy has been extended to the total synthesis of illudinine methyl ester (1b) starting from methyl 8-methoxy-2,2-dimethyl-7-oxo-1,2,3,5,6,7-hexahydro-s-indacene-4-carboxylate (4).
Resumo:
M r = 188.22, monoclinic, P21/n, a = 6.219 (2), b= 10.508 (2), c=7.339 (1)A, t= 107.64 (2) °, V= 457 ,/k 3, Z = 2, D m - - 1.360 (3), D x = 1.366 (2)Mgm -3, ~,(MoKa) = 0.7107/~, #= 0.053 mm -I, F(000) = 200, T= 293 K. Final R = 5.8% for 614 significant reflections. The molecule, which does not possess a centre of symmetry, occupies a crystallographic centre of symmetry because of the statistical enantiomeric and rotational disorder. Latticeenergy calculations, based on van der Waals attractive and repulsive potentials, clearly show minima at the observed disordered positions.
Resumo:
The structure of the abnormal product 1a formed in the Knoevenagel condensation of 2-carbethoxycyclohexanone and malononitrile has been further confirmed. Oxidation of the tetrahydroisoquinoline 3b using Na2Cr2O-AcOH-H2SO4 gave the keto isoquinoline 3d and the isoquinoline-1-carboxylic acid 5a. The acid chloride of 5a was condensed with diethyl ethoxymagnesiomalonate to afford after decarbethoxylation the methyl ketone 5d which on Baeyer-Villiger oxidation gave a mixture of the acetate 1g and the title compound 1b. The unambiguous synthesis of 1b confirms the structure assigned earlier to the title compound also formed during the partial hydrolysis of the diethoxy compound 1c. Condensation of 2-acetylcyclohexane-1,3-dione with malononitrile gave the quinoline derivative 4c which on ethylation yielded the ketoquinoline 4d. The present studies have confirmed that the quinoline compound 4a is also formed in the condensation of 2-acetylcyclohexanone and cyanoacetamide.
Resumo:
In the molecular structure of the title compound, C21H25NO4, the dihydropyridine ring adopts a flattened boat conformation while the cyclohexenone ring is in an envelope conformation. In the crystal structure, molecules are linked into a two-dimensional network parallel to (10 (1) over bar) by N-H center dot center dot center dot O and O-H center dot center dot center dot O hydrogen bonds. The network is generated by R-4(4)(30) and R-4(4)(34) graph-set motifs.
Resumo:
The title compound, C24H24N2O3S, exhibits antifungal and antibacterial properties. The compound crystallizes with two molecules in the asymmetric unit, with one molecule exhibiting 'orientational disorder' in the crystal structure with respect to the cyclohexene ring. The o-toluidine groups in both molecules are noncoplanar with the respective cyclohexene-fused thiophene ring. In both molecules, there is an intramolecular N-H...N hydrogen bond forming a pseudo-six-membered ring which locks the molecular conformation and eliminates conformational flexibility. The crystal structure is stabilized by O-H...O hydrogen bonds; both molecules in the asymmetric unit form independent chains, each such chain consisting of alternating 'ordered' and 'disordered' molecules in the crystal lattice.
Resumo:
Heterocyclic urea derivatives play an important role as anticancer agents because of their good inhibitory activity against receptor tyrosine kinases (RTKs), raf kinases, protein tyrosine kinases (PTKs), and NADH oxidase, which play critical roles in many aspects of tumorigenesis. Benzothiazole moiety constitutes an important scaffold of drugs, possessing several pharmacological functions, mainly the anticancer activity. Based on these interesting properties of benzothiazoles and urea moiety to obtain new biologically active agents, we synthesized a series of novel 1-((S)-2-amino-4,5,6.7-tetrahydrobenzo[d]thiazol-6-yl)-3-(substituted phenyl)urea derivatives and evaluated for their efficacy as antileukemic agents against two human leukemic cell lines (K562 and Reh). These compounds showed good and moderate cytotoxic effect to cancer cell lines tested. Compounds with electron-withdrawing chloro and fluoro substituents on phenyl ring showed good activity and compounds with electron-donating methoxy group showed moderate activity. Compound with electron-withdrawing dichloro substitution on phenyl ring of aryl urea showed good activity. Further, lactate dehydrogenase (LDH) assay, flow cytometric analysis of annexin V-FITC/propidium iodide (PI) double staining and DNA fragmentation studies showed that compound with dichloro substitution on phenyl ring of aryl urea can induce apoptosis.