5 resultados para 2,2-Dimethylbutane per unit sediment volume

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The liquid and the glassy phases of 2,2-dimethylbutane have been investigated by isothermal isobaric ensemble Monte Carlo simulation. Thermodynamic Properties and radial distribution functions for both the liquid and the glass have been obtained. The radial distribution functions have been classified into three types based on the accessibility of the group. It has been shown that the structure of the Iiquid and the glass can be understood in terms of the above classification of the radial distribution functions. Molecular reorientation plays an important role in the structural rearrangement accompanying glass formation. As much as 35% of the contribution to the increase in the intermolecular interaction energy on vitrification is due to the reorientation of the neighbouring pairs of molecules. The observed changes in the dimerisation energy and the bonding energy distribution function are consistent with the observed structural changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is concerned with a study of an unusual effect due to density of biomass pellets in modern stoves based on close-coupled gasification-combustion process. The two processes, namely, flaming with volatiles and glowing of the char show different effects. The mass flux of the fuel bears a constant ratio with the air flow rate of gasification during the flaming process and is independent of particle density; char glowing process shows a distinct effect of density. The bed temperatures also have similar features: during flaming, they are identical, but distinct in the char burn (gasification) regime. For the cases, wood char and pellet char, the densities are 350, 990 kg/m(3), and the burn rates are 2.5 and 3.5 g/min with the bed temperatures being 1380 and 1502 K, respectively. A number of experiments on practical stoves showed wood char combustion rates of 2.5 +/- 0.5 g/min and pellet char burn rates of 3.5 +/- 0.5 g/min. In pursuit of the resolution of the differences, experimental data on single particle combustion for forced convection and ambient temperatures effects have been obtained. Single particle char combustion rate with air show a near-d(2) law and surface and core temperatures are identical for both wood and pellet char. A model based on diffusion controlled heat release-radiation-convection balance is set up. Explanation of the observed results needs to include the ash build-up over the char. This model is then used to explain observed behavior in the packed bed; the different packing densities of the biomass chars leading to different heat release rates per unit bed volume are deduced as the cause of the differences in burn rate and bed temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equilibrium sediment volume tests are conducted on field soils to classify them based on their degree of expansivity and/or to predict the liquid limit of soils. The present technical paper examines different equilibrium sediment volume tests, critically evaluating each of them. It discusses the settling behavior of fine-grained soils during the soil sediment formation to evolve a rationale for conducting the latest version of equilibrium sediment volume test. Probable limitations of equilibrium sediment volume test and the possible solution to overcome the same have also been indicated.