10 resultados para 1995_03300815 TM-59 4502104
em Indian Institute of Science - Bangalore - Índia
Resumo:
The effect of confinement on the structure of hemoglobin (Hb) within polymer capsules was investigated here. Hemoglobin transformed from an aggregated state in solution to a nonaggregated state when confined inside the polymer capsules. This was directly confirmed using synchrotron small-angle X-ray scattering (SAXS) studies. The radius of gyration (R-g) and polydispersity (p) of the proteins in the confined state were smaller compared to those in solution. In fact, the R-g value is very similar to theoretical values obtained using protein structures generated from the Protein Databank. In the temperature range (25-85 degrees C, Tm 59 degrees C), the R-g values for the confined Hb remained constant. This observation is in contrary to the increasing R-g values obtained for the bare Hb in solution. This suggested higher thermal stability of Hb when confined inside the polymer capsule than when in solution. Changes in protein configuration were also reflected in the protein function. Confinement resulted in a beneficial enhancement of the electroactivity of Hb. While Hb in solution showed dominance of the cathodic process (Fe3+ -> Fe2+), efficient reversible Fe3+/Fe2+ redox response is observed in the case of the confined Hb. This has important protein functional implications. Confinement allows the electroactive heme to take up positions favorable for various biochemical activities such as sensing of analytes of various sizes from small to macromolecules and controlled delivery of drugs.
Resumo:
Phase diagrams for Tm2O3-H2O-CO2. Yb2O3-H2O-CO2 and Lu2O3-H2O-CO2 systems at 650 and 1300 bars have been investigated in the temperature range of 100–800°C. The phase diagrams are far more complex than those for the lighter lanthanides. The stable phases are Ln(OH)3, Ln2(CO3)3.3H2O (tengerite phase), orthorhombic-LnOHCO3, hexagonal-Ln2O2CO3. LnOOH and cubic-Ln2O3. Ln(OH)3 is stable only at very low partial pressures of CO2. Additional phases stabilised are Ln2O(OH)2CO3and Ln6(OH)4(CO3)7 which are absent in lighter lanthanide systems. Other phases, isolated in the presence of minor alkali impurities, are Ln6O2(OH)8(CO3)3. Ln4(OH)6(CO3)3 and Ln12O7(OH)10,(CO3)6. The chemical equilibria prevailing in these hydrothermal systems may be best explained on the basis of the four-fold classification of lanthanides.
Resumo:
We report formation of new noncentrosymmetric oxides of the formula, R3Mn1.5CuV0.5O9 for R = Y, Ho, Er, Tm, Yb and Lu, possessing the hexagonal RMnO3 (space group P6(3)cm) structure. These oxides could be regarded as the x = 0.5 members of a general series R3Mn3-3xCu2xVxO9. Investigation of the Lu-Mn-Cu-V-O system reveals the existence of isostructural solid solution series, Lu3Mn3-3xCu2xVxO9 for 0 < x <= 0.75. Magnetic and dielectric properties of the oxides are consistent with a random distribution of Mn3+, Cu2+ and V5+ atoms that preserve the noncentrosymmetric RMnO3 structure. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The Ramberg-Osgood relation which adequately describes the stress-strain curve of a strain-hardening material is extended to formulate the constitutive laws for creep. The constitutive laws which describe primary creep adequately are extended to secondary creep. The results are verified for the case of R.R. 59 at 200°C, Nimonic 80A and Nimonic 90 alloys at 750°C.
Resumo:
The phase relations in the systems Cu–O–R2O3(R = Tm, Lu) have been determined at 1273 K by X-ray diffraction, optical microscopy and electron probe microanalysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only ternary compounds of the type Cu2R2O5 were found to be stable. The standard Gibbs energies of formation of the compounds have been measured using solid-state galvanic cells of the type, Pt|Cu2O + Cu2R2O5+ R2O3‖(Y2O3)ZrO2‖CuO + Cu2O‖Pt in the temperature range 950–1325 K. The standard Gibbs energy changes associated with the formation of Cu2R2O5 compounds from their binary component oxides are: 2CuO(s)+ Tm2O3(s)→Cu2Tm2O5(s), ΔG°=(10400 – 14.0 T/K)± 100 J mol–1, 2CuO(s)+ Lu2O3(s)→Cu2Lu2O5(s), ΔG°=(10210 – 14.4 T/K)± 100 J mol–1 Since the formation is endothermic, the compounds become thermodynamically unstable with respect to component oxides at low temperatures, Cu2Tm2O5 below 743 K and Cu2Lu2O5 below 709 K. When the chemical potential of oxygen over the Cu2R2O5 compounds is lowered, they decompose according to the reaction, 2Cu2R2O5(s)→2R2O3(s)+ 2Cu2O(s)+ O2(g) The equilibrium oxygen potential corresponding to this reaction is obtained from the emf. Oxygen potential diagrams for the Cu–O–R2O3 systems at 1273 K are presented.
Resumo:
The equilibrium decomposition temperatures of Cu2Ln2O5 (Ln = Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds have been measured using a combined DTA-TGA apparatus under a flowing Ar + O2 gas mixture, in which the partial pressure of oxygen was controlled at 5.0 × 103 Pa. The Cu2Ln2O5 compounds yield Ln2O3 and Cu2O on decomposition. The decomposition temperature increases monotonically with the atomic number of the lanthanide element. This suggests that the stability of the Cu2Ln2O5 compounds with respect to the component binary oxides increases with decreasing radius of the Ln3+ ion.
Resumo:
Phase equilibria in the system Tm-Rh-O at 1200 K is established by isothermal equilibration of selected compositions and phase identification after quenching to room temperature. Six intermetallic phases (Tm3Rh, Tm7Rh3, Tm5Rh3, Tm3Rh2, TmRh, TmRh2 +/-delta) and a ternary oxide TmRhO3 are identified. Based on experimentally determined phase relations, a solid-state electrochemical cell is devised to measure the standard free energy of formation of orthorhombic perovskite TmRhO3 from cubic Tm2O3 and beta-Rh2O3 in the temperature range from (900 to 1300) K. The results can be summarized as: Delta G(f,ox)(o) +/- 104/J.mol(-1) = -46474 + 3.925(T/K). Invoking the Neumann-Kopp rule, the standard enthalpy of formation of TmRhO3 from its constituent elements at 298.15 K is estimated as -1193.89 (+/- 2.86) kJ.mol(-1). The standard entropy of TmRhO3 at 298.15 K is evaluated as 103.8 (+/- 1.6) J.mol(-1).K-1. The oxygen potential-composition diagram and three-dimensional chemical potential diagram at 1200 K and temperature-composition diagrams at constant partial pressures of oxygen are computed from thermodynamic data. The compound TmRhO3 decomposes at 1688 (+/- 2) K in pure oxygen and at 1583 (+/- 2) K in air at standard pressure.
Resumo:
We investigated area changes in glaciers covering an area of similar to 200 km(2) in the Tista basin, Sikkim, Eastern Indian Himalaya, between similar to 1990 and 2010 using Landsat Thematic Mapper (TM) and Indian Remote-sensing Satellite (IRS) images and related the changes to debris cover, supraglacial lakes and moraine-dam lakes. The glaciers lost an area of 3.3 +/- 0.8% between 1989/90 and 2010. More detailed analysis revealed an area loss of 2.00 +/- 0.82, 2.56 +/- 0.61 and 2.28 +/- 2.01 km(2) for the periods 1989-97, 1997-2004/05 and 2004-2009/10, respectively. This indicates an accelerated retreat of glaciers after 1997. On further analysis, we observed (1) the formation and expansion of supraglacial lakes on many debris-covered glaciers and (2) the merging of these lakes over time, leading to the development of large moraine-dam lakes. We also observed that debris-covered glaciers with lakes lose a greater area than debris-covered glaciers without lakes and debris-free glaciers. The climatic data for 24 years (1987-2011), measured at the Gangtok meteorological station (1812 m a.s.l.), showed that the region experienced a 1.0 degrees C rise in the summer minimum temperature and a 2.0 degrees C rise in the winter minimum temperature, indicating hotter summers and warmer winters. There was no significant trend in the total annual precipitation. We find that glacier retreat is caused mainly by a temperature increase and that debris-covered glaciers can retreat at a faster rate than debris-free glaciers, if associated with lakes.