7 resultados para 1934
em Indian Institute of Science - Bangalore - Índia
Resumo:
The methoxycyclophosphazenes [NP(OMe),], (n = 3-6) rearrange on heating to give oxocyclophosphazanes, [N(Me)PO(OMe)],. Isomeric products are formed when n = 4-6. The lH, ,lP, and 13C n.m.r. data for the starting materials and the products are presented. The ethoxy- and n-propoxy-derivatives N,P,( OR)* do not undergo the above rearrangement. The geminal derivatives N,P,R,(OMe), (R = Ph or NHBut) on heating yield both fully and partially rearranged products, namely dioxophosphaz-1 -enes and oxophosphazadienes, as shown by 270- MHz lH n.m.r. spectroscopy. The non-geminal derivative N,P,( NMe,),(OMe), gives only the fully rearranged product N,Me,P,(NMe,),O,(OMe), whose structure has been established from its lH and 31P n.m.r. spectra.
Resumo:
NICOTINAMIDE adenine dinucleotide (NAD) has a fundamental role in metabolic processes as an electron transport molecule. Although its chemical structure was elucidated1 in 1934, its detailed conformation remains still to be established in spite of numerous physicochemical applications2. NAD analogues with a variety of substitutions on the bases are known to retain considerable activity of the natural coenzyme as long as the pyrophosphate diester group has been retained3,4. The geometry of this backbone moiety is therefore indispensable to our understanding of the conformation and function of the coenzyme. We have so far no experimental evidence on this in NAD or any other nucleotide coenzyme molecule. X-ray studies have been possible only on those analogues5,6 where the nicotinamide and adenine rings are linked by a trimethylene bridge. The results are conflicting and it is difficult to use them to provide a structural basis for the NAD molecule itself, particularly as the phosphate backbone is absent from these analogues.
Resumo:
The similar to 2500 km long Himalayan arc has experienced three large to great earthquakes of M-w 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the similar to 2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two-thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar-Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event offset is relatively much smaller (<2.5 m), and radiocarbon dating shows it to have occurred after A.D. 1100 (after about A.D. 1270). The location of the site near the edge of the meizoseismal region of the 1950 Assam earthquake and the relatively lesser offset allows speculation that the displacement records the 1950 M-w 8.4 Assam earthquake. Scatter in radiocarbon ages on detrital charcoal has not resulted in a firm bracket on the timing of events observed in the trenches. Nonetheless, the observations collected here, when taken together, suggest that the largest of thrust earthquakes along the Himalayan arc have rupture lengths and displacements of similar scale to the largest that have occurred historically along the world's subduction zones.
Resumo:
The similar to 2500 km-long Himalaya plate boundary experienced three great earthquakes during the past century, but none of them generated any surface rupture. The segments between the 1905-1934 and the 1897-1950 sources, known as the central and Assam seismic gaps respectively, have long been considered holding potential for future great earthquakes. This paper addresses two issues concerning earthquakes along the Himalaya plate boundary. One, the absence of surface rupture associated with the great earthquakes, vis-a-vis the purported large slip observed from paleoseismological investigations and two, the current understanding of the status of the seismic gaps in the Central Himalaya and Assam, in view of the paleoseismological and historical data being gathered. We suggest that the ruptures of earthquakes nucleating on the basal detachment are likely to be restricted by the crustal ramps and thus generate no surface ruptures, whereas those originating on the faults within the wedges promote upward propagation of rupture and displacement, as observed during the 2005 Kashmir earthquake, that showed a peak offset of 7 m. The occasional reactivation of these thrust systems within the duplex zone may also be responsible for the observed temporal and spatial clustering of earthquakes in the Himalaya. Observations presented in this paper suggest that the last major earthquake in the Central Himalaya occurred during AD 1119-1292, rather than in 1505, as suggested in some previous studies and thus the gap in the plate boundary events is real. As for the Northwestern Himalaya, seismically generated sedimentary features identified in the 1950 source region are generally younger than AD 1400 and evidence for older events is sketchy. The 1897 Shillong earthquake is not a decollement event and its predecessor is probably similar to 1000 years old. Compared to the Central Himalaya, the Assam Gap is a corridor of low seismicity between two tectonically independent seismogenic source zones that cannot be considered as a seismic gap in the conventional sense. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Himalayas are one of very active seismic regions in the world where devastating earthquakes of 1803 Bihar-Nepal, 1897 Shillong, 1905 Kangra, 1934 Bihar-Nepal, 1950 Assam and 2011 Sikkim were reported. Several researchers highlighted central seismic gap based on the stress accumulation in central part of Himalaya and the non-occurrence of earthquake between 1905 Kangra and 1934 Bihar-Nepal. The region has potential of producing great seismic event in the near future. As a result of this seismic gap, all regions which fall adjacent to the active Himalayan region are under high possible seismic hazard due to future earthquakes in the Himalayan region. In this study, the study area of the Lucknow urban centre which lies within 350 km from the central seismic gap has been considered for detailed assessment of seismic hazard. The city of Lucknow also lies close to Lucknow-Faizabad fault having a seismic gap of 350 years. Considering the possible seismic gap in the Himalayan region and also the seismic gap in Lucknow-Faizabad fault, the seismic hazard of Lucknow has been studied based on deterministic and the probabilistic seismic hazard analysis. Results obtained show that the northern and western parts of Lucknow are found to have a peak ground acceleration of 0.11-0.13 g, which is 1.6- to 2.0-fold higher than the seismic hazard compared to the other parts of Lucknow.
Resumo:
The Himalaya has experienced three great earthquakes during the last century1934 Nepal-Bihar, 1950 Upper Assam, and arguably the 1905 Kangra. Focus here is on the central Himalayan segment between the 1905 and the 1934 ruptures, where previous studies have identified a great earthquake between thirteenth and sixteenth centuries. Historical data suggest damaging earthquakes in A.D. 1255, 1344, 1505, 1803, and 1833, although their sources and magnitudes remain debated. We present new evidence for a great earthquake from a trench across the base of a 13m high scarp near Ramnagar at the Himalayan Frontal Thrust. The section exposed four south verging fault strands and a backthrust offsetting a broad spectrum of lithounits, including colluvial deposits. Age data suggest that the last great earthquake in the central Himalaya most likely occurred between A.D. 1259 and 1433. While evidence for this rupture is unmistakable, the stratigraphic clues imply an earlier event, which can most tentatively be placed between A.D. 1050 and 1250. The postulated existence of this earlier event, however, requires further validation. If the two-earthquake scenario is realistic, then the successive ruptures may have occurred in close intervals and were sourced on adjacent segments that overlapped at the trench site. Rupture(s) identified in the trench closely correlate with two damaging earthquakes of 1255 and 1344 reported from Nepal. The present study suggests that the frontal thrust in central Himalaya may have remained seismically inactive during the last similar to 700years. Considering this long elapsed time, a great earthquake may be due in the region.
Resumo:
The objective of this paper was to develop the seismic hazard maps of Patna district considering the region-specific maximum magnitude and ground motion prediction equation (GMPEs) by worst-case deterministic and classical probabilistic approaches. Patna, located near Himalayan active seismic region has been subjected to destructive earthquakes such as 1803 and 1934 Bihar-Nepal earthquakes. Based on the past seismicity and earthquake damage distribution, linear sources and seismic events have been considered at radius of about 500 km around Patna district center. Maximum magnitude (M (max)) has been estimated based on the conventional approaches such as maximum observed magnitude (M (max) (obs) ) and/or increment of 0.5, Kijko method and regional rupture characteristics. Maximum of these three is taken as maximum probable magnitude for each source. Twenty-seven ground motion prediction equations (GMPEs) are found applicable for Patna region. Of these, suitable region-specific GMPEs are selected by performing the `efficacy test,' which makes use of log-likelihood. Maximum magnitude and selected GMPEs are used to estimate PGA and spectral acceleration at 0.2 and 1 s and mapped for worst-case deterministic approach and 2 and 10 % period of exceedance in 50 years. Furthermore, seismic hazard results are used to develop the deaggregation plot to quantify the contribution of seismic sources in terms of magnitude and distance. In this study, normalized site-specific design spectrum has been developed by dividing the hazard map into four zones based on the peak ground acceleration values. This site-specific response spectrum has been compared with recent Sikkim 2011 earthquake and Indian seismic code IS1893.