7 resultados para 162-2

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydroxylated cytokinin, 2-methylthio-N6-(4-hydroxy-3-methylbut-2-enyl) adenosine, was found in the tRNA of Azotobacter vinelandii. This cytokinin had the trans configuration, unlike the cis configuration reported for that from other bacteria. Culture-condition-dependent changes in the content of this thiocytokinin and a few other thionucleosides in the tRNA of this bacterium have been observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combustion instabilities can cause serious problems which limit the operating envelope of low-emission lean premixed combustion systems. Predicting the onset of combustion instability requires a description of the unsteady heat release driving the instability, i.e., the heat release response transfer function of the system. This study focuses on the analysis of fully coupled two-way interactions between a disturbance field and a laminar premixed flame that incorporates gas expansion effects by solving the conservation equations of a compressible fluid. Results of the minimum and maximum flame front deflections are presented to underline the impact of the hydrodynamic instability on the flame and the shear layer effect on the initial flame front wrinkling which is increased at decreasing gas expansion. These phenomena influence the magnitude of the burning area and burning area rate response of the flame at lower frequency excitation more drastically than reduced-order model (ROM) predictions even for low temperature ratios. It is shown that the general trend of the flame response magnitudes can be well captured at higher frequency excitation, where stretch effects are dominant. The phase response is influenced by the DL mechanism, which cannot be captured by the ROM, and by the resulting discrepancy in the flame pocket formation and annihilation process at the flame tip. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

35S incorporation studies showed that Candida tropicalis tRNA contained two thionucleosides, one of which was identified as 5-methyl-2-thiouridine. The other thionucleoside was alkali labile, and it appeared to be an ester. Pulse-chase experiments suggested that the two thionucleosides were structurally related. 5-Methyl-2-thiouridine was present in one of the lysine tRNAs. This is the first report of the presence of this nucleoside in a yeast tRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal structures of the title compounds, (I) and (II), have been determined by three-dimensional diffraction methods. Crystals of CsHIoN 4 (I) are monoclinic, space group P21/a with Z = 4, Mr= 162, a = 7.965 (1), b = 16.232 (2), c = 7.343 (1) A, fl = 113.54 (1) °, V = 890.7 A 3, D,n = 1.218, D x = 1.208 gcm -3, g(Cu Ka, 2 = 1.5418/~) = 6.47 em -1, F(000) = 344. The crystals of C9H12N4 (II) are orthorhombic, space group P21en, with Z = 4, Mr = 176, a = 7.983 (3), b = 8.075 (2), c = 14.652 (3) ./k, V = 944.43/~3, Dm= 1.219, D x = 1.237 g cm -3, #(Mo Ka, ). = 0.7107 ,/k) = 0.868 cm -1, F(000) = 376. Both structures were solved by direct methods and refined to R = 5.8% for (I) and 5.3 % for (II). The C-C double-bond distances are 1.407 (3) in (I) and 1.429 (6)/~ in (II), appreciably longer than normal. The steric and push-pull effects result in rotation about the C=C bond, the rotation angles being 20.2 (3) in (I) and 31.5 (6) o in (II).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal structures of the title compounds, (I) and (II), have been determined by three-dimensional diffraction methods. Crystals of CsHIoN 4 (I) are monoclinic, space group P21/a with Z = 4, Mr= 162, a = 7.965 (1), b = 16.232 (2), c = 7.343 (1) A, fl = 113.54 (1) °, V = 890.7 A 3, D,n = 1.218, D x = 1.208 gcm -3, g(Cu Ka, 2 = 1.5418/~) = 6.47 em -1, F(000) = 344. The crystals of C9H12N4 (II) are orthorhombic, space group P21en, with Z = 4, Mr = 176, a = 7.983 (3), b = 8.075 (2), c = 14.652 (3) ./k, V = 44.43/~3, Dm= 1.219, D x = 1.237 g cm -3, #(Mo Ka, ). = 0.7107 ,/k) = 0.868 cm -1, F(000) = 376. Both structures were solved by direct methods and refined to R = 5.8% for (I) and 5.3 % for (II). The C-C double-bond distances are 1.407 (3) in (I) and 1.429 (6)/~ in (II), appreciably longer than normal. The steric and push-pull effects result in rotation about the C=C bond, the rotation angles being 20.2 (3) in (I) and 31.5 (6) o in (II).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure analysis of the cyclic biscystine peptide [Boc-Cys1-Ala2-Cys3-NHCH3]2 with two disulfide bridges confirms the antiparallel ?-sheet conformation for the molecule as proposed for the conformation in solution. The molecule has exact twofold rotation symmetry. The 22-membered ring contains two transannular NH ? OC hydrogen bonds and two additional NH ? OC bonds are formed at both ends of the molecule between the terminal (CH3)3COCO and NHCH3 groups. The antiparallel peptide strands are distorted from a regularly pleated sheet, caused mainly by the L-Ala residue in which ?=� 155° and ?= 162°. In the disulfide bridge C? (1)-C? (1)-S(1)-(3')-C?(3')-C?(3'), S�S = 2.030 Å, angles C? SS = 107° and 105°, and the torsional angles are �49, �104, +99, �81, �61°, respectively. The biscystine peptide crystallizes in space group C2 with a = 14.555(2) Ã…, b = 10.854(2) Ã…, c = 16.512(2)Ã…, and ?= 101.34(1) with one-half formula unit of C30H52N8O10S4· 2(CH3)2SO per asymmetric unit. Least-squares refinement of 1375 reflections observed with |F| > 3?(F) yielded an R factor of 7.2%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.