6 resultados para 1535
em Indian Institute of Science - Bangalore - Índia
Resumo:
Relay selection for cooperative communications promises significant performance improvements, and is, therefore, attracting considerable attention. While several criteria have been proposed for selecting one or more relays, distributed mechanisms that perform the selection have received relatively less attention. In this paper, we develop a novel, yet simple, asymptotic analysis of a splitting-based multiple access selection algorithm to find the single best relay. The analysis leads to simpler and alternate expressions for the average number of slots required to find the best user. By introducing a new contention load' parameter, the analysis shows that the parameter settings used in the existing literature can be improved upon. New and simple bounds are also derived. Furthermore, we propose a new algorithm that addresses the general problem of selecting the best Q >= 1 relays, and analyze and optimize it. Even for a large number of relays, the scalable algorithm selects the best two relays within 4.406 slots and the best three within 6.491 slots, on average. We also propose a new and simple scheme for the practically relevant case of discrete metrics. Altogether, our results develop a unifying perspective about the general problem of distributed selection in cooperative systems and several other multi-node systems.
Resumo:
The virus inducible non-coding RNA (VINC) was detected initially in the brain of mice infected with Japanese encephalitis virus (JEV) and rabies virus. VINC is also known as NEAT1 or Men epsilon RNA. It is localized in the nuclear paraspeckles of several murine as well as human cell lines and is essential for paraspeckle formation. We demonstrate that VINC interacts with the paraspeckle protein, P54nrb through three different protein interaction regions (PIRs) one of which (PIR-1) is localized near the 50 end while the other two (PIR-2, PIR-3) are localized near the 30 region of VINC. Our studies suggest that VINC may interact with P54nrb through a novel mechanism which is different from that reported for protein coding RNAs. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Resumo:
A novel zincoborate, Zn(H2O)B2O4.xH(2)O (xapproximate to0.12), I, with open architecture has been synthesized hydrothermally. The 3-dimensional structure is built up of Zn6B12O24 clusters formed by the capping of the polycyclic borate anion, B12O2412-, by Zn3O3 clusters. The open-framework structure of I has one-dimensional 8-membered channels wherein the water molecules reside. Formation of trimeric Zn3O3 clusters as well as the presence of boron in dual coordination, both triangular and tetrahedral, are important structural features of this new zincoborate.
Resumo:
Cross polarisation is extensively used in solid state NMR for enhancing signals of nuclei with low gyromagnetic ratio. However, the use of the method for providing quantitative structural and dynamics information is limited. This arises due to the fact that the mechanism which is responsible for cross polarisation namely, the dipolar interaction, has a long range and is also anisotropic. In nematic liquid crystals these limitations are easily overcome since molecules orient in a magnetic field. The uniaxial ordering of the molecules essentially removes problems associated with the angular dependence of the interactions encountered in powdered solids. The molecular motion averages out intermolecular dipolar interaction, while retaining partially averaged intramolecular interaction. In this article the use of cross polarisation for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment were considered and their utility illustrated. A method for obtaining proton-proton dipolar couplings, by utilizing cross polarisation from the dipolar reservoir, is also presented.
Resumo:
The essential oil from the leaves of Didymocarpus tomentosa was extracted by hydrodistillation and analyzed by GC/FID and GC/MS. Twenty five constituents amounting to 81.6% of the oil were identified. The leaf oil contained 78.7% sesquiterpenes and 2.9% monoterpenes. The leaf essential oil of D. tomentosa is a unique caryophyllene-rich natural source containing beta-caryophyllene, caryophyllene oxide, alpha-humulene and humulene oxide. The cytotoxic activity of the oil was determined by the BSLT using shrimp larva and the MTT assay using HeLa tumor cell line. The oil showed significant cytotoxic activity with LC50 and IC50 values of 12.26 and 11.4 mu g/mL, respectively. This is the first report on the chemical composition and cytotoxic activity of the essential oil of D. tomentosa.
Resumo:
Aberrant activation of Notch and Ras pathways has been detected in breast cancers. A synergy between these two pathways has also been shown in breast cell transformation in culture. Yet, the clinical relevance of Notch-Ras cooperation in breast cancer progression remains unexplored. In this study, we show that coordinate hyperactivation of Notch1 and Ras/MAPK pathways in breast cancer patient specimens, as assessed by IHC for cleaved Notch1 and pErk1/2, respectively, correlated with early relapse to vital organs and poor overall survival. Interestingly, majority of such Notch1 (high)Erk(high) cases encompassed the highly aggressive triple-negative breast cancers (TNBC), and were enriched in stem cell markers. We further show that combinatorial inhibition of Notch1 and Ras/MAPK pathways, using a novel mAb against Notch1 and a MEK inhibitor, respectively, led to a significant reduction in proliferation and survival of breast cancer cells compared with individual inhibition. Combined inhibition also abrogated sphere-forming potential, and depleted the putative cancer stem-like cell subpopulation. Most importantly, combinatorial inhibition of Notch1 and Ras/MAPK pathways completely blocked tumor growth in a panel of breast cancer xenografts, including the TNBCs. Thus, our study identifies coordinate hyperactivation of Notch1 and Ras/MAPK pathways as novel biomarkers for poor breast cancer outcome. Furthermore, based on our preclinical data, we propose combinatorial targeting of these two pathways as a treatment strategy for highly aggressive breast cancers, particularly the TNBCs that currently lack any targeted therapeutic module. (C) 2014 AACR.