101 resultados para 151-912C
em Indian Institute of Science - Bangalore - Índia
Resumo:
With the use of tensor analysis and the method of singular surfaces, an infinite system of equations can be derived to study the propagation of curved shocks of arbitrary strength in gas dynamics. The first three of these have been explicitly given here. This system is further reduced to one involving scalars only. The choice of dependent variables in the infinite system is quite important, it leads to coefficients free from singularities for all values of the shock strength.
Resumo:
The entire extracellular domain of the human heat-stable enterotoxin (ST) receptor as well as a truncated N-terminal domain were cloned as glutathione S-transferase fusion proteins and expressed in Escherichia coli. The recombinant fusion proteins were purified from both the cytosol and the inclusion body fractions by selective detergent extraction followed by glutathione-agarose affinity chromatography. The purified protein, corresponding to the entire extracellular domain, bound the stable toxin peptide with an affinity comparable to that of the native receptor characterized from the human colonic T84 cell line. No binding was observed with the N-terminal truncated fragment of the receptor under similar conditions, Polyclonal antibodies were raised to the entire extracellular domain fusion protein as well as the truncated extracellular domain fusion protein, and the antibodies were purified by affinity chromatography. Addition of the purified antibodies to T84 cells inhibited ST binding and abolished ST-mediated cGMP production, indicating that critical epitopes involved in ligand interaction are present in the N-terminal fragment of the receptor, Purified antibodies recognized a single protein of M(r) 160,000 Da on Western blotting with T84 membranes, corresponding to a size of the native glycosylated receptor in T84 cells. These studies are the first report of the expression, purification, and characterization of any member of the guanylyl cyclase family of receptors in E. coli and show that binding of the toxin to the extracellular domain of the receptor is possible in the absence of any posttranslational modifications such as glycosylation. The recombinant fusion proteins as well as the antibodies that we have generated could serve as useful tools in the identification of critical residues of the extracellular domain involved in ligand interaction.
Resumo:
A simple equivalent circuit model for the analysis of dispersion and interaction impedance characteristics of serpentine folded-waveguide slow-wave structure was developed by considering the straight and curved portions of structure supporting the dominant TE10-mode of the rectangular waveguide. Expressions for the lumped capacitance and inductance per period of the slow-wave structure were derived in terms of the physical dimensions of the structure, incorporating the effects of the beam-hole in the lumped parameters. The lumped parameters were subsequently interpreted for obtaining the dispersion and interaction impedance characteristics of the structure. The analysis was simple yet accurate in predicting the dispersion and interaction impedance behaviour at millimeter-wave frequencies. The analysis was benchmarked against measurement as well as with 3D electromagnetic modeling using MAFIA for two typical slow-wave structures (one at the Ka-band and the other at the W-band) and close agreement observed.
Resumo:
The rectangular dielectric waveguide is the most commonly used structure in integrated optics, especially in semi-conductor diode lasers. Demands for new applications such as high-speed data backplanes in integrated electronics, waveguide filters, optical multiplexers and optical switches are driving technology toward better materials and processing techniques for planar waveguide structures. The infinite slab and circular waveguides that we know are not practical for use on a substrate because the slab waveguide has no lateral confinement and the circular fiber is not compatible with the planar processing technology being used to make planar structures. The rectangular waveguide is the natural structure. In this review, we have discussed several analytical methods for analyzing the mode structure of rectangular structures, beginning with a wave analysis based on the pioneering work of Marcatili. We study three basic techniques with examples to compare their performance levels. These are the analytical approach developed by Marcatili, the perturbation techniques, which improve on the analytical solutions and the effective index method with examples.
Inverse Sensitivity Analysis of Singular Solutions of FRF matrix in Structural System Identification
Resumo:
The problem of structural damage detection based on measured frequency response functions of the structure in its damaged and undamaged states is considered. A novel procedure that is based on inverse sensitivity of the singular solutions of the system FRF matrix is proposed. The treatment of possibly ill-conditioned set of equations via regularization scheme and questions on spatial incompleteness of measurements are considered. The application of the method in dealing with systems with repeated natural frequencies and (or) packets of closely spaced modes is demonstrated. The relationship between the proposed method and the methods based on inverse sensitivity of eigensolutions and frequency response functions is noted. The numerical examples on a 5-degree of freedom system, a one span free-free beam and a spatially periodic multi-span beam demonstrate the efficacy of the proposed method and its superior performance vis-a-vis methods based on inverse eigensensitivity.
Resumo:
L-Alanylglycyl-L-alanine, C8H15N3O4, exists as zwitter-ion in the crystal with the N terminus protonated and the C terminus in an ionized form, Both the peptide units are in trans configurations and deviate significantly from planarity. Backbone torsion angles are psi(1)=172.7(2), omega(1)=-178.2(2), phi(2)=91.7(2), phi(2)=-151.9(2), omega(2)=-176.9(2), phi(3)=-71.3(2), phi(31)=-7.0(3) and psi(32) 172.4(2)degrees. The protonated NH3+ group forms three hydrogen bonds with atoms of symmetry-related molecules.
Resumo:
The band characteristic of the OH group has been recorded in the Raman spectra of many hydroxides and alcohols. It has not so far been observed, however, in the case of the stronger acids. Using the improved technique of complementary filters recently developed by Ananthakrishnan1, and giving long exposures varying from six to twelve days, I have succeeded in obtaining spectra with sulphuric acid and crystals of iodic, selenious and telluric acids, in which the band is clearly seen in the 4046 A. excitation. Table 1 gives the frequency shifts. The value for boric acid is taken from Ananthakrishnan's paper2.
Resumo:
We consider models for the rheology of dense, slowly deforming granular materials based of classical and Cosserat plasticity, and their viscoplastic extensions that account for small but finite particle inertia. We determine the scale for the viscosity by expanding the stress in a dimensionless parameter that is a measure of the particle inertia. We write the constitutive relations for classical and Cosserat plasticity in stress-explicit form. The viscoplastic extensions are made by adding a rate-dependent viscous stress to the plasticity stress. We apply the models to plane Couette flow, and show that the classical plasticity and viscoplasticity models have features that depart from experimental observations; the prediction of the Cosserat viscoplasticity model is qualitatively similar to that of Cosserat plasticity, but the viscosities modulate the thickness of the shear layer.
Resumo:
The reaction of Cu(II), Zn(II), Cd(II) and Hg(II) chlorides and bromides with imidazoline-2-thione (IZT) and its N-methyl derivative (NMIZT) yields complexes of stoichiometry ML3X2 and ML2X (IZT) and its N-methyl derivative (NMIZT) yields complexes of stoichiometry ML3X2 and ML2X (where M=Cu(I)); copper(II) halides yield Cu(I) complexes. On the basis of infrared and 13C n.m.r.
Resumo:
Abstract is not available.
Resumo:
Nucleosome core particles and oligonucleosomes were isolated by digesting rat testis nuclei with micrococcal nuclease to 20% acid-solubility, followed by fractionation of the digest on a Bio-Gel A-5m column. The core particles thus isolated were characterized on the basis of their DNA length of 151 +/- 5 base-pairs and sedimentation coefficient of 11.4S. Analysis of the acid-soluble proteins of the core particles indicated that histones TH2B and X2 are constituents of the core particles, in addition to the somatic histones H2A, H2B, H3 and H4. The acid-soluble proteins of the oligonucleosomes comprised all the histones, including both the somatic (H1, H2A, H2B, H3, H4 and X2) and the testis-specific ones (TH1 and TH2B). It was also observed that histones TH1 and H1 are absent from the core particles and were readily extracted from the chromatin by 0.6 M-NaCl, which indicated that both of them are bound to the linker DNA.
Resumo:
The perturbation treatment previously given is extended to explain the process of hydrogen abstraction from the various hydrogen donor molecules by the triplet nπ* state of ketones or the ground state of the alkyl or alkoxy radical. The results suggest that, as the ionization energy of the donor bonds is decreased, the reaction is accelerated and it is not influenced by the bond strength of the donor bonds. The activation barrier in such reactions arises from a weakening of the charge resonance term as the ionization energy of the donor bond increases.
Resumo:
The hydrodynamical problem of flow in proximal renal tubule is investigated by considering axisymmetric flow of a viscous, incompressible fluid through a long narrow tube of varying cross-section with reabsorption at the wall. Two cases for reabsorption have been studied (i) when the bulk flow,Q, decays exponentially with the axial distancex, and (ii) whenQ is an arbitrary function ofx such thatQ-Q 0 can be expressed as a Fourier integral (whereQ 0 is the flux atx=0). The analytic expressions for flow variables have been obtained by applying perturbation method in terms of wall parameter ε. The effects of ε on pressure drop across the tube, radial velocity and wall shear have been studied in the case of exponentially decaying bulk flow and it has been found that the results are in agreement with the existing ones for the renal tubules.