13 resultados para 12930-084
em Indian Institute of Science - Bangalore - Índia
Resumo:
C17H2602, M, = 262, triclinic, PI, a = 8.513(2), b = 8.970(2), c = 11.741(3)A, a = 120.51 (5), fl = 93.30(4), y = 68.43(4) ° , V = 708.9,/k 3, Z = 2, D O = 1.213, D e = 1.227 Mg m -a, g(Mo Ka, 2 = 0.7107 ,&) = 0.084 mm -1, F(000) = 288. The structure, solved by direct methods, has been refined to an R value of 5.9% using 1361 intensity measurements. The ring junctions, in sequence from either end of the polycycle, are cis, trans and cis.
Resumo:
Dimethyl 3-(aryl)-3,6-dihydro-2H-1,3-oxazine4,5-dicarboxylate structure assigned for the products obtained in the Bronsted acid catalyzed reaction of dimethyl but-2-ynoates with anilines and an excess of formaldehyde in methanol has been revised to methyl 1-(aryl)-3-(methoxymethyl)-4,5-dioxopyrrolidine-3-carboxylate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The ternary metal nucleotide complexes [Ni(en)1.3(H2O)1.4(H2O)2][Ni(5?-dGMP)2(en)0.7-(H2O)0.6(H2O)2]·7H2O (1) and [Ni(en)2(H2O)2][Ni(5?-GMP)2(H2O)4]·6H2O (2)(en = ethylenediamine, 5?-dGMP = 2?-deoxyguanosine 5?-monophosphate, 5?-GMP = guanosine 5?-monophosphate) have been prepared and their structures analyzed by X-ray diffraction methods. Both compounds crystallise in the space group C2221 with a= 8.810(1), b= 25.090(4), c= 21.084(1)Å, and Z= 4 for (1) and a= 8.730(1), b= 25.691(4), c= 21.313(5)Å, and Z= 4 for (2). The structures were deduced from the analogous CoIII complexes and refined by full-matrix least-squares methods to final R values of 0.087 and 0.131 for 1 211 and 954 reflections for (1) and (2) respectively. An interesting feature of the deoxyribonucleotide complex (1) is that en is not totally labilized from the metal centre on nucleotide co-ordination, as observed in corresponding ribonucleotide complexes. Apart from extensive intra- and inter-molecular hydrogen bonding, the structures are stabilized by significant intracomplex base�base and base�sugar interactions. The nucleotides in both complexes have an anti base, C(2?)-endo sugar pucker, and gauche�gauche conformation about the C(4?)�C(5?) bond.
Resumo:
We have designed and synthesized three novel compounds, 5-isopropylidiene derivatives of 3-dimethyl-2-thio-hydantoin (ITH-1), 3-ethyl-2-thio-2,4-oxazolidinedione (ITO-1), and 5-benzilidene-3-ethyl rhodanine (BTR-1), and have tested their chemotherapeutic properties. Our results showed that all three compounds induced cytotoxicity in a time-and concentration-dependent manner on leukemic cell line, CEM. Among the compounds tested, BTR-1 was 5- to 7-fold more potent than ITH-1 and ITO-1 when compared by trypan blue and MTT assays. IC50 value of BTR-1 was estimated to be <10 mu M. Both cell cycle analysis and tritiated thymidine assays revealed that BTR-1 affects DNA replication by inducing a block at S phase. BTR-1 treatment led to increased level of ROS production and DNA strand breaks suggesting activation of apoptosis for induction of cell death. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Diruthenium(II1) compounds, Ru20(02CAr)2(MeCN)4(PPh3)2(C104)(z1~) Hazn0d R U ~ O ( O ~ C A ~ ) ~(2() P(PA~r ~= )P~h,C6H4-p-OMe), were prepared by reacting R U ~ C I ( O ~ CaAnd~ P)P~h 3 in MeCN and characterized by analytical and spectral data. The molecular structures of 1 with Ar = Ph and of 2 with Ar = C&p-OMe were determined by X-ray crystallography. Crystal data for Ru~~(~~CP~)~(M~CN),(PP~(~la)):~ m(oCnIoc~lin,ic), n~/~cH, ~a O= 27.722 (3) A, b = 10.793 (2) A, c = 23.445 ( 2 )A , fi = 124.18 (l)', V = 5803 A3, and 2 = 4. Cr stal data for Ru~O(O~CC~H~-~-O(M2b~): )o~rth(orPhoPm~bi~c, )Pn~n a, a = 22.767 (5) A, b = 22.084 (7) A, c = 12.904 (3) 1, V = 6488 AS; and 2 = 4. Both 1 and 2 have an (Ruz0(02CAr)z2t1 core that is analogous to the diiron core present in the oxidized form of the nonheme respiratory protein hemerythrin. The Ru-Ru distances of 3.237 (1) and 3.199 ( I ) A observed in 1 and 2, respectively, are similar to the M-M distances known in other model systems. The essentially diamagnetic nature of 1 and 2 is due to the presence of two strongly interacting t22 Ru"' centers. The intense colors of 1 (blue) and 2 (purple) are due to the charge-transfer transition involving an ( R ~ ~ ( f i - 0m)o~ie~ty.) The presence of labile MeCN and carboxylato ancillary ligands in I and 2, respectively, makes these systems reactive toward amine and heterocyclic bases.
Resumo:
Electro-oxidation of methanol was studied on carbon-supported Pt---Sn/C electrodes in silcotungstic acid (SiWA) at various concentrations. The porous-carbon electrodes employing Pt---Sn/C catalyst have been characterized using chemical analyses, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) in conjunction with electrochemistry. The presence of Pt---Sn and Pt3Sn alloys along with Pt and SnO2 phases in the catalyst were identified by XRD. XPS analysis showed a lower amount of PtO species in the Pt---Sn/C catalyst with respect to the corresponding Pt/C sample. From the steady-state galvanostatic polarization data on Pt---Sn/C electrodes in SiWA, it is inferred that a one-electron process is the rate determining step. The performance of the electrodes in 0.084 M SiWA was better than in 2.5 M H2SO4 under similar conditions up to load currents of about 100 mA cm−2 indicating the promoting behaviour of the electrolyte. At currents larger than 100 mA cm−2, the performance of the electrodes in 0.084 SiWA was poorer than that in 2.5 M H2SO4 mainly due to the dominance of mass polarization in the former owing to the large size of keggin units associated with the structure of SiWA. This aspect was supported by cyclic voltammetry and ac impedance studies on Pt---Sn/C electrodes. Simulation of the electrochemical impedance response for the oxidation of methanol in SiWA was carried out using the equivalent electrical circuit model.
Resumo:
Electro-oxidation of methanol was studied on carbon-supported Pt-Sn/C electrodes in silcotungstic acid (SiWA) at various concentrations. The porous-carbon electrodes employing Pt-Sn/C catalyst have been characterized using chemical analyses, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) in conjunction with electrochemistry. The presence of Pt-Sn and Pt3Sn alloys along with Pt and SnO2 phases in the catalyst were identified by XRD. XPS analysis showed a lower amount of PtO species in the Pt-Sn/C catalyst with respect to the corresponding Pt/C sample. From the steady-state galvanostatic polarization data on Pt-Sn/C electrodes in SiWA, it is inferred that a one-electron process is the rate determining step. The performance of the electrodes in 0.084 M SiWA was better than in 2.5 M H2SO4 under similar conditions up to load currents of about 100 mA cm-2 indicating the promoting behaviour of the electrolyte. At currents larger than 100 mA cm-2, the performance of the electrodes in 0.084 SiWA was poorer than that in 2.5M H2SO4 mainly due to the dominance of mass polarization in the former owing to the large size of Keggin units associated with the structure of SiWA. This aspect was supported by cyclic voltammetry and ac impedance studies on Pt-Sn/C electrodes. Simulation of the electrochemical impedance response for the oxidation of methanol in SiWA was carried out using the equivalent electrical circuit model.
Resumo:
Adhesive wear has been widely accepted as the type of wear which is most frequently encountered under fretting conditions. Present study has been carried out to study the mode of failure and mechanisms associated under conditions where strong adhesion prevails at the contact interface. Mechanical variables such as normal load, displacement amplitude, and environment conditions were controlled so as to simulate adhesion as the governing mechanism at the contact interface. Self-mated Stainless Steel (SS) and chromium carbide with 25% nickel chrome binder coatings using plasma spray and high-velocity oxy-fuel (HVOF) processes on SS were considered as the material for contacting bodies. Damage in the form of plastic deformation, fracture, and material transfer has been observed. Further, chromium carbide with 25% nickel chrome binder coatings using HVOF process on SS shows less fretting damage, and can be considered as an effective palliative against fretting damage, even under high vacuum conditions. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We present the application of a bismuth modified exfoliated graphite electrode in the detection of arsenic in water. Bismuth film was electrodeposited onto an exfoliated graphite (EG) electrode at a potential of -600 mV. The modification of EG resulted in an increase in the electroactive surface area of the electrode and consequently peak current enhancement in Ru(NH3)(6)(2+/13+) redox probe. Square wave anodic stripping voltammetry was performed with the modified electrode (EG-Bi) in As (III) solutions at the optimum conditions of pH 6, deposition potential of -600 mV and pre-concentration time of 180s. The EG-Bi was able to detect As (III) to the limit of 5 mu g L-1 and was not susceptible to many interfering cations except Cu (II). The EG-Bi is low cost and easy to prepare. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The first synthesis of 1,3-thiazine fused peptide mimics is described from N-(3-hydroxypropyl)thioamides under MsCl/NEt3 conditions. The method is amenable to oligopeptidomimics with polar and apolar side chains. Substantial epimerization occurs at chiral C(2) exo methines in non-Pro fused mimics even under neutral conditions. H-1 NMR and crystal structure analyses indicate that the Thi analogues primarily associate with each other through intermolecular hydrogen bonds, involving the nitrogen of 1,3-thiazine and the N-H of the fused residue, which may be the basis for enamination-racemization process in these peptide mimics. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The performance of metal hydride based solid sorption cooling systems depends on the driving pressure differential, and the rate of hydrogen transfer between coupled metal hydride beds during cooling and regeneration processes. Conventionally, the mid-plateau pressure difference obtained from `static' equilibrium PCT data are used for the thermodynamic analysis. It is well known that the processes are `dynamic' because the pressure and temperature, and hence the concentration of the hydride beds, are continuously changing. Keeping this in mind, the pair of La0.9Ce0.1Ni5 - LaNi4.7Al0.3 metal hydrides suitable for solid sorption cooling systems were characterised using both static and dynamic methods. It was found that the PCT characteristics, and the resulting enthalpy (Delta H) and entropy (Delta S) values, were significantly different for static and dynamic modes of measurements. In the present study, the solid sorption metal hydride cooling system is analysed taking in to account the actual variation in the pressure difference (Delta P) and the dynamic enthalpy values. Compared to `static' property based analysis, significant decrease in the driving potentials and transferrable amounts of hydrogen, leading to decrease in cooling capacity by 57.8% and coefficient of performance by 31.9% are observed when dynamic PCT data at the flow rate of 80 ml/min are considered. Copyright 2014 (C) Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report the remarkable phase separation behavior in La0.67Sr0.33MnO3 doped with Bi3+ ion at La site. The temperature dependent resistivity and magnetization of La0.67-xBixSr0.33MnO3 (x>0) show the presence of phase separation of ferromagnetic metallic and charge ordered antiferromagnetic insulating phases. Markedly, the field dependant magnetization studies of La0.67-xBixSr0.33MnO3 (x=0.3) show the metamagnetic nature of ferromagnetic metallic state implying the competition of coexisting ferromagnetic metallic and charge ordered antiferromagnetic phases. The electron spin resonance and exchange bias studies of La0.67-xBixSr0.33MnO3 (x=0.4 and 0.5) substantiate the coexistence of ferromagnetic clusters in antiferromagnetic matrix. (C) 2016 Elsevier B.V. All rights reserved.