10 resultados para 1188

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesh topologies are important for large-scale peer-to-peer systems that use low-power transceivers. The Quality of Service (QoS) in such systems is known to decrease as the scale increases. We present a scalable approach for dissemination that exploits all the shortest paths between a pair of nodes and improves the QoS. Despite th presence of multiple shortest paths in a system, we show that these paths cannot be exploited by spreading the messages over the paths in a simple round-robin manner; nodes along one of these paths will always handle more messages than the nodes along the other paths. We characterize the set of shortest paths between a pair of nodes in regular mesh topologies and derive rules, using this characterization, to effectively spread the messages over all the available paths. These rules ensure that all the nodes that are at the same distance from the source handle roughly the same number of messages. By modeling the multihop propagation in the mesh topology as a multistage queuing network, we present simulation results from a variety of scenarios that include link failures and propagation irregularities to reflect real-world characteristics. Our method achieves improved QoS in all these scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple moire method for the direct measurement of refractive indices is presented. The change of magnification and/or distortion of the image of a linear grating when viewed through a refractive index field is amplified by means of moire fringes and is measured directly. Relations between the index of refraction and fringe spacing are derived and have been verified experimentally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement of dipolar couplings using separated local field (SLF) NMR experiment is a powerful tool for structural and dynamics studies of oriented molecules such as liquid crystals and membrane proteins in aligned lipid bilayers. Enhancing the sensitivity of such SLF techniques is of significant importance in present-day solid-state NMR methodology. The present study considers the use of adiabatic cross-polarization for this purpose, which is applied for the first time to one of the well-known SLF techniques, namely, polarization inversion spin exchange at the magic angle (PISEMA). The experiments have been carried out on a single crystal of a model peptide, and a dramatic enhancement in signal-to-noise up to 90% has been demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical model has been developed for the gas carburising (diffusion) process using finite volume method. The computer simulation has been carried out for an industrial gas carburising process. The model's predictions are in good agreement with industrial experimental data and with data collected from the literature. A study of various mass transfer and diffusion coefficients has been carried out in order to suggest which correlations should be used for the gas carburising process. The model has been interfaced in a Windows environment using a graphical user interface. In this way, the model is extremely user friendly. The sensitivity analysis of various parameters such as initial carbon concentration in the specimen, carbon potential of the atmosphere, temperature of the process, etc. has been carried out using the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose-shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X-ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of halogen molecules of varying electron affinity, such as iodine monochloride (ICl), bromine (Br(2)), iodine monobromide (IBr) and iodine (I(2)) with single-walled carbon nanotubes (SWNTs) and graphene has been investigated in detail. Halogen doping of the two nanocarbons has been examined using Raman spectroscopy in conjunction with electronic absorption spectroscopy and extensive theoretical calculations. The halogen molecules, being electron withdrawing in nature, induce distinct changes in the electronic states of both the SWNTs and graphene, which manifests with a change in the spectroscopic signatures. Stiffening of the Raman G-bands of the nanocarbons upon treatment with the different halogen molecules and the emergence of new bands in the electronic absorption spectra, both point to the fact that the halogen molecules are involved in molecular charge-transfer with the nanocarbons. The experimental findings have been explained through density functional theory (DFT) calculations, which suggest that the extent of charge-transfer depends on the electron affinities of the different halogens, which determines the overall spectroscopic properties. The magnitude of the molecular charge-transfer between the halogens and the nanocarbons generally varies in the order ICl > Br(2) > IBr > I(2), which is consistent with the expected order of electron affinities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoacoustics is the interaction between heat and sound, which are useful in designing heat engines and heat pumps. Research in the field of thermoacoustics focuses on the demand to improve the performance which is achieved by altering operational, geometrical and fluid parameters. The present study deals with improving the performance of twin thermoacoustic prime mover, which has gained the significant importance in the recent years for the production of high amplitude sound waves. The performance of twin thermoacoustic prime mover is evaluated in terms of onset temperature difference, resonance frequency and pressure amplitude of the acoustic waves by varying the resonator length and charge pressures of fluid medium nitrogen. DeltaEC, the free simulation software developed by LANL, USA is employed in the present study to simulate the performance of twin thermoacoustic prime mover. Experimental and simulated results are compared and the deviation is found to be within 10%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contrary to the actual nonlinear Glauber model, the linear Glauber model (LGM) is exactly solvable, although the detailed balance condition is not generally satisfied. This motivates us to address the issue of writing the transition rate () in a best possible linear form such that the mean squared error in satisfying the detailed balance condition is least. The advantage of this work is that, by studying the LGM analytically, we will be able to anticipate how the kinetic properties of an arbitrary Ising system depend on the temperature and the coupling constants. The analytical expressions for the optimal values of the parameters involved in the linear are obtained using a simple Moore-Penrose pseudoinverse matrix. This approach is quite general, in principle applicable to any system and can reproduce the exact results for one dimensional Ising system. In the continuum limit, we get a linear time-dependent Ginzburg-Landau equation from the Glauber's microscopic model of non-conservative dynamics. We analyze the critical and dynamic properties of the model, and show that most of the important results obtained in different studies can be reproduced by our new mathematical approach. We will also show in this paper that the effect of magnetic field can easily be studied within our approach; in particular, we show that the inverse of relaxation time changes quadratically with (weak) magnetic field and that the fluctuation-dissipation theorem is valid for our model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is one of the leading cause of cancer related deaths in women and early detection is crucial for reducing mortality rates. In this paper, we present a novel and fully automated approach based on tissue transition analysis for lesion detection in breast ultrasound images. Every candidate pixel is classified as belonging to the lesion boundary, lesion interior or normal tissue based on its descriptor value. The tissue transitions are modeled using a Markov chain to estimate the likelihood of a candidate lesion region. Experimental evaluation on a clinical dataset of 135 images show that the proposed approach can achieve high sensitivity (95 %) with modest (3) false positives per image. The approach achieves very similar results (94 % for 3 false positives) on a completely different clinical dataset of 159 images without retraining, highlighting the robustness of the approach.