26 resultados para 111 Mathematics
em Indian Institute of Science - Bangalore - Índia
Resumo:
A straightforward analysis involving Fourier cosine transforms and the theory of Fourier seies is presented for the approximate calculation of the hydrodynamic pressure exerted on the vertical upstream face of a dam due to constant earthquake ground acceleration. The analysis uses the “Parseval relation” on the Fourier coefficients of square integrable functions, and directly brings out the mathematical nature of the approximate theory involved.
Resumo:
Aircraft pursuit-evasion encounters in a plane with variable speeds are analysed as a differential game. An engagement-dependent coordinate system confers open-loop optimality on the game. Each aircraft's optimal motion can be represented by extremel trajectory maps which are independent of role, adversary and capture radius. These maps are used in two different ways to construct the feedback solution. Some examples are given to illustrate these features. The paper draws on earlier results and surveys several existing papers on the subject.
Resumo:
The stability characteristics of Alfvén Internal gravity waves for an inviscid, nondissipative, Boussinesq fluid undergoing shear in the presence of a density discontinuity with and without a rigid boundary is studied.
Resumo:
The book of nature is written in the language of mathematics. This quotation, attributed to Galileo, seemed to hold to an unreasonable1 extent in the era of quantum mechanics.
Resumo:
A global recursive bisection algorithm is described for computing the complex zeros of a polynomial. It has complexityO(n 3 p) wheren is the degree of the polynomial andp the bit precision requirement. Ifn processors are available, it can be realized in parallel with complexityO(n 2 p); also it can be implemented using exact arithmetic. A combined Wilf-Hansen algorithm is suggested for reduction in complexity.
Resumo:
As editors of the book Lilavati's Daughters: The Women Scientists of India, reviewed by Asha Gopinathan (Nature 460, 1082; 2009), we would like to elaborate on the background to its title. Lilavati was a mathematical treatise of the twelfth century, composed by the mathematician and astronomer Bhaskaracharya (1114–85) — also known as Bhaskara II — who was a teacher of repute and author of several other texts. The name Lilavati, which literally means 'playful', is a surprising title for an early scientific book. Some of the mathematical problems posed in the book are in verse form, and are addressed to a girl, the eponymous Lilavati. However, there is little real evidence concerning Lilavati's historicity. Tradition holds that she was Bhaskaracharya's daughter and that he wrote the treatise to console her after an accident that left her unable to marry. But this could be a later interpolation, as the idea was first mentioned in a Persian commentary. An alternative view has it that Lilavati was married at an inauspicious time and was widowed shortly afterwards. Other sources have implied that Lilavati was Bhaskaracharya's wife, or even one of his students — raising the possibility that women in parts of the Indian subcontinent could have participated in higher education as early as eight centuries ago. However, given that Bhaskara was a poet and pedagogue, it is also possible that he chose to address his mathematical problems to a doe-eyed girl simply as a whimsical and charming literary device.
Resumo:
One influential image that is popular among scientists is the view that mathematics is the language of nature. The present article discusses another possible way to approach the relation between mathematics and nature, which is by using the idea of information and the conceptual vocabulary of cryptography. This approach allows us to understand the possibility that secrets of nature need not be written in mathematics and yet mathematics is necessary as a cryptographic key to unlock these secrets. Various advantages of such a view are described in this article.
Resumo:
InN quantum dots (QDs) were fabricated on Si(111) substrate by droplet epitaxy using an RF plasma-assisted MBE system. Variation of the growth parameters, such as growth temperature and deposition time, allowed us to control the characteristic size and density of the QDs. As the growth temperature was increased from 100 C to 300 degrees C, an enlargement of QD size and a drop in dot density were observed, which was led by the limitation of surface diffusion of adatoms with the limited thermal energy. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to assess the QDs size and density. The chemical bonding configurations of InN QDs were examined by X-ray photo-electron spectroscopy (XPS). Fourier transform infrared (FTIR) spectrum of the deposited InN QDs shows the presence of In-N bond. Temperature-dependent photoluminescence (PL) measurements showed that the emission peak energies of the InN QDs are sensitive to temperature and show a strong peak emission at 0.79 eV.
Resumo:
The concept of short range strong spin-two (f) field (mediated by massive f-mesons) and interacting directly with hadrons was introduced along with the infinite range (g) field in early seventies. In the present review of this growing area (often referred to as strong gravity) we give a general relativistic treatment in terms of Einstein-type (non-abelian gauge) field equations with a coupling constant Gf reverse similar, equals 1038 GN (GN being the Newtonian constant) and a cosmological term λf ƒ;μν (ƒ;μν is strong gravity metric and λf not, vert, similar 1028 cm− is related to the f-meson mass). The solutions of field equations linearized over de Sitter (uniformly curves) background are capable of having connections with internal symmetries of hadrons and yielding mass formulae of SU(3) or SU(6) type. The hadrons emerge as de Sitter “microuniverses” intensely curved within (radius of curvature not, vert, similar10−14 cm).The study of spinor fields in the context of strong gravity has led to Heisenberg's non-linear spinor equation with a fundamental length not, vert, similar2 × 10−14 cm. Furthermore, one finds repulsive spin-spin interaction when two identical spin-Image particles are in parallel configuration and a connection between weak interaction and strong gravity.Various other consequences of strong gravity embrace black hole (solitonic) solutions representing hadronic bags with possible quark confinement, Regge-like relations between spins and masses, connection with monopoles and dyons, quantum geons and friedmons, hadronic temperature, prevention of gravitational singularities, providing a physical basis for Dirac's two metric and large numbers hypothesis and projected unification with other basic interactions through extended supergravity.
Resumo:
High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN film grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
One of the scientific challenges of growing InN quantum dots (QDs), using Molecular beam epitaxy (MBE), is to understand the fundamental processes that control the morphology and distribution of QDs. A systematic manipulation of the morphology, optical emission, and structural properties of InN/Si (111) QDs is demonstrated by changing the growth kinetics parameters such as flux rate and growth time. Due to the large lattice mismatch, between InN and Si (similar to 8%), the dots formed from the Strannski-Krastanow (S-K) growth mode are dislocated. Despite the variations in strain (residual) and the shape, both the dot size and pair separation distribution show the scaling behavior. We observed that the distribution of dot sizes, for samples grown under varying conditions, follow the scaling function.
Resumo:
Photoluminescence (PL) of high quality GaN epitaxial layer grown on beta-Si3N4/Si (1 1 1) substrate using nitridation-annealing-nitridation method by plasma-assisted molecular beam epitaxy (PA-MBE) was investigated in the range of 5-300 K. Crystallinity of GaN epilayers was evaluated by high resolution X-ray diffraction (HRXRD) and surface morphology by Atomic Force Microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). The temperature-dependent photoluminescence spectra showed an anomalous behaviour with an `S-like' shape of free exciton (FX) emission peaks. Distant shallow donor-acceptor pair (DAP) line peak at approximately 3.285 eV was also observed at 5 K, followed by LO replica sidebands separated by 91 meV. The activation energy of the free exciton for GaN epilayers was also evaluated to be similar to 27.8 +/- 0.7 meV from the temperature-dependent PL studies. Low carrier concentrations were observed similar to 4.5 +/- 2 x 10(17) Cm-3 by measurements and it indicates the silicon nitride layer, which not only acts as a growth buffer layer, but also effectively prevents Si diffusion from the substrate to GaN epilayers. The absence of yellow band emission at around 2.2 eV signifies the high quality of film. The tensile stress in GaN film calculated by the thermal stress model agrees very well with that derived from Raman spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
YMnO3 thin films were grown on an n-type Si substrate by nebulized spray pyrolysis in the metal-ferroelectric-semiconductor (MFS) configuration. The capacitance-voltage characteristics of the film in the MFS structure exhibit hysteretic behaviour consistent with the polarization charge switching direction, with the memory window decreasing with increase in temperature. The density of the interface states decreases with increasing annealing temperature. Mapping of the silicon energy band gap with the interface states has been carried out. The leakage current, measured in the accumulation region, is lower in well-crystallized thin films and obeys a space-charge limited conduction mechanism. The calculated activation energy from the dc leakage current characteristics of the Arrhenius plot reveals that the activation energy corresponds to oxygen vacancy motion.