150 resultados para 1-7
em Indian Institute of Science - Bangalore - Índia
Resumo:
We describe the design and synthesis of new lithium ion conductors with the formula, LiSr(1.65)rectangle(0.35)B(1.3)B'O-1.7(9) (rectangle = vacancy; B = Ti, Zr; B' = Nb, Ta), on the basis of a systematic consideration of the composition-structure-property correlations in the well-known lithium-ion conductor, La-(2/3-x)Li(3x)rectangle((1/3)-2x)TiO3 (I), as well as the perovskite oxides in Li-A-B,B'-O (A = Ca, Sr, Ba; B = Ti, Zr; B' = Nb, Ta) systems. A high lithium-ion conductivity of ca. 0.12 S/cm at 360 degrees C is exhibited by LiSr(1.65)rectangle(0.35)Ti(1.3)Ta(1.7)O(9) (III) and LiSr(1.65)rectangle(0.35)Zr(1.3)Ta(1.7)O(9) (IV), of which the latter containing stable Zr(IV) and Ta(V) oxidation states is likely to be a candidate electrolyte material for all-solid-state lithium battery application. More importantly, we believe the approach described here could be extended to synthesize newer, possibly better, lithium ion conductors.
Resumo:
Mr= 361.3, triclinic, P1, a = 6-239 (2), b=11.280(2), c=12-451(2)A, a=101.2 (1), B= 92.3 (1), 7=99.9(1)°, V=844.123 A3, Z=2, Dx= 1.42, D m = 1.42 (1) Mg m -3, n(Cu Ka) = 1.5418 ,A., g = 1-102 mm -1, F(000) = 376, T= 293 K. Final R = 0.064 for 2150 observed reflections. The niflumic acid anions consist essentially of three planar groupings, namely, two six-membered rings and a carboxylate group attached to one of them. The invariant common structural features observed in the crystal structures of fenamates, namely, the coplanarity of the carboxyl group and the six-membered ring bearing it, and the internal hydrogen bond between the carboxyl group and the imino N atom that bridges the two sixmembered rings, are retained in the complex. The amino N atom is gauche with respect to the terminal hydroxyl group in the ethanolamine cation. The complexation between the two molecules is achieved through ionic and hydrogen-bonded interactions involving the carboxylate group in niflumic acid.
Resumo:
Cd-1 - xNixSiO3 (x = 1-7 mol%) nanophosphors have been prepared for the first time by the combustion method using oxylyldihydrizide as a fuel. Powder X-ray diffraction results confirm the formation of monoclinic phase. Scanning electron micrographs show that Ni2+ influences the porosity of samples. The optical energy gap is widened with increase of Ni2+ ion dopant. The electron paramagnetic resonance spectrum of Ni2+ ions in CdSiO3 exhibits a symmetric absorption at g = 2.343 and the site symmetry around Ni2+ ions is predominantly octahedral. The number of spins participating in resonance (N) and the paramagnetic susceptibility (chi) has been evaluated. The thermoluminescence intensity is found to increase up to similar to 20 min ultra-violet exposure and thereafter, decrease with further increase of ultra-violet dose. The kinetic parameters such as activation energy (E), frequency factor (s)and order of kinetics was estimated using glow peak shape method and the results are discussed. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An investigation of a series of seven angular ``V'' shaped NPIs (1-7) is presented. The effect of substitution of these structurally similar NPIs on their photophysical properties in the solution-state and the solid-state is presented and discussed in light of experimental and computational findings. Compounds 1-7 show negligible to intensely strong emission yields in their solid-state depending on the nature of substituents appended to the oxoaryl moiety. The solution and solid-state properties of the compounds can be directly correlated with their structural rigidity, nature of substituents and intermolecular interactions. The versatile solid-state structures of the NPI siblings are deeply affected by the pendant substituents. All of the NPIs (1-7) show antiparallel dimeric pi-pi stacking interactions in their solid-state which can further extend in a parallel, alternate, orthogonal or lateral fashion depending on the steric and electronic nature of the C-4' substituents. Structural investigations including Hirshfeld surface analysis methods reveal that where strongly interacting systems show weak to moderate emission in their condensed states, weakly interacting systems show strong emission yields under the same conditions. The nature of packing and extended structures also affects the emission colors of the NPIs in their solid-states. Furthermore, DFT computational studies were utilized to understand the molecular and cumulative electronic behaviors of the NPIs. The comprehensive studies provide insight into the condensed-state luminescence of aggregationprone small molecules like NPIs and help to correlate the structure-property relationships.
Resumo:
Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca2+ ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 mu M and 120 mu M indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 mu M and 1.7 mu M. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a alpha-helical rich protein. Calcium binding further increased the alpha-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. (C) 2015 Elsevier GmbH. All rights reserved.
Resumo:
We report a circuit technique to measure the on-chip delay of an individual logic gate (both inverting and non-inverting) in its unmodified form using digitally reconfigurable ring oscillator (RO). Solving a system of linear equations with different configuration setting of the RO gives delay of an individual gate. Experimental results from a test chip in 65nm process node show the feasibility of measuring the delay of an individual inverter to within 1pS accuracy. Delay measurements of different nominally identical inverters in close physical proximity show variations of up to 26% indicating the large impact of local or within-die variations.
Resumo:
Inventory Management (IM) plays a decisive role in the enhancement of efficiency and competitiveness of manufacturing enterprises. Therefore, major manufacturing enterprises are following IM practices as a strategy to improve efficiency and achieve competitiveness. However, the spread of IM culture among Small and Medium Enterprises (SMEs) is limited due to lack of initiation, expertise and financial limitations in developed countries, leave alone developing countries. With this backdrop, this paper makes an attempt to ascertain the role and importance of IM practices and performance of SMEs in the machine tools industry of Bangalore, India. The relationship between inventory management practices and inventory cost are probed based on primary data gathered from 91 SMEs. The paper brings out that formal IM practices have a positive impact on the inventory performance of SMEs.
Resumo:
This paper reports a new class of photo-cross-linkable side chain liquid crystalline polymers (PSCLCPs) based on the bis(benzylidene)cyclohexanone unit, which functions as both a mesogen and a photoactive center. Polymers with the bis(benzylidene)cyclohexanone unit and varying spacer length have been synthesized. Copolymers of bis(benzylidene)cyclohexanone containing monomer and cholesterol benzoate containing monomer with different compositions have also been prepared. All these polymers have been structurally characterized by spectroscopic techniques. Thermal transitions were studied by DSC, and mesophases were identified by polarized light optical microscopy (POM). The intermediate compounds OH-x, the monomers SCLCM-x, and the corresponding polymers PSCLCP-x, which are essentially based on bis(benzylidene)cyclohexanone, all show a nematic mesophase. Transition temperatures were observed to decrease with increasing spacer length. The copolymers with varying compositions exhibit a cholesteric mesophase, and the transition temperatures increase with the cholesteric benzoate units in the copolymer. Photolysis of the low molecular weight liquid crystalline bis(benzylidene)-cyclohexanone compound reveals that there are two kinds of photoreactions in these systems: the EZ photoisomerization and 2 pi + 2 pi addition. The EZ photoisomerization in the LC phase disrupts the parallel stacking of the mesogens, resulting in the transition from the LC phase to the isotropic phase. The photoreaction involving the 2 pi + 2 pi addition of the bis(benzylidene)cyclohexanone units in the polymer results in the cross-linking of the chains. The liquid crystalline induced circular dichroism (LCICD) studies of the cholesterol benzoate copolymers revealed that the cholesteric supramolecular order remains even after the photo-cross-linking.
Resumo:
We find in complementary experiments and event-driven simulations of sheared inelastic hard spheres that the velocity autocorrelation function psi(t) decays much faster than t(-3/2) obtained for a fluid of elastic spheres at equilibrium. Particle displacements are measured in experiments inside a gravity-driven flow sheared by a rough wall. The average packing fraction obtained in the experiments is 0.59, and the packing fraction in the simulations is varied between 0.5 and 0.59. The motion is observed to be diffusive over long times except in experiments where there is layering of particles parallel to boundaries, and diffusion is inhibited between layers. Regardless, a rapid decay of psi(t) is observed, indicating that this is a feature of the sheared dissipative fluid, and is independent of the details of the relative particle arrangements. An important implication of our study is that the non-analytic contribution to the shear stress may not be present in a sheared inelastic fluid, leading to a wider range of applicability of kinetic theory approaches to dense granular matter.
Resumo:
An attractive microstructural possibility for enhancing the ductility of high-strength nanocrystals is to develop a bimodal grain-size distribution, in which the fine grains provide strength, and the coarser grains enable strain hardening. Annealing of nanocrystalline Ni over a range of temperatures and times led to microstructures with varying volume fractions of coarse grains and a change in texture. Tensile tests revealed a drastic reduction in ductility with increasing volume fraction of coarse grains. The reduction in ductility may be related to the segregation of sulphur to grain boundaries.
Resumo:
The effect of Surface lipopolysaccharides (LPS) on the electrophoretic softness and fixed charge density in the ion-penetrable layer of Acidithiobacillus ferrooxidans cells grown in presence of copper or arsenic ions have been discussed, The electrophoretic mobility data were analyzed using the soft-particle electrophoresis theory. Cell surface potentials of all the strains based on soft-particle theory were lower than those estimated using the conventional Smoluchowski theory, Exposure to metal ions increased the Surface electrophoretic softness with decrease in the fixed charge density. Effect of cell surface lipopolysaccharides on the model parameters are investigated and discussed.
Resumo:
A comparative first principles study has been carried out for EuLiH3 (ELH) and EuTiO3 (ETO) using the generalized gradient approximation +U approach. While ELH exhibits ferromagnetic ground state for all volumes, the magnetic ground state of ETO has the tendency to switch from G-type antiferromagnetic to a ferromagnetic state with change in volume. The marked difference in magnetic behavior and magnitude of the nearest neighbors exchange interaction of both the compounds are shown to be related to the difference in their respective electronic structure near the Fermi level. The Ti 3d states are shown to play predominant role in weakening the strength of the exchange interaction in ETO.
Resumo:
An oxovanadium(IV) complex of dipyridophenazine, as a potent metal-based PDT agent, shows efficient DNA photocleavage activity at near-IR region and high photocytotoxicity in both UV-A and visible light in HeLa cells.
Resumo:
The role of the amino and carboxyl-terminal regions of cytosolic serine hydroxymethyltransferase (SHMT) in subunit assembly and catalysis was studied using six amino-terminal (lacking the first 6, 14, 30, 49, 58, and 75 residues) and two carboxyl-terminal (lacking the last 49 and 185 residues) deletion mutants. These mutants were constructed from a full length cDNA clone using restriction enzyme/PCR-based methods and overexpressed in Escherichia coli. The overexpressed proteins, des-(A1-K6)-SHMT and des-(A1- W14)-SHMT were present in the soluble fraction and they were purified to homogeneity. The deletion clones, for des-(A1–V30)-SHMT and des-(A1–L49)-SHMT were expressed at very low levels, whereas des-(A1–R58)-SHMT, des-(A1–G75)-SHMT, des-(Q435–F483)-SHMT and des-(L299-F483)-SHMT mutant proteins were not soluble and formed inclusion bodies. Des-(A1–K6)-SHMT and des-(A1–W14)-SHMT catalyzed both the tetrahydrofolate-dependent and tetrahydrofolate-independent reactions, generating characteristic spectral intermediates with glycine and tetrahydrofolate. The two mutants had similar kinetic parameters to that of the recombinant SHMT (rSHMT). However, at 55 °C, the des-(A1–W14)-SHMT lost almost all the activity within 5 min, while at the same temperature rSHMT and des-(A1–K6)-SHMT retained 85% and 70% activity, respectively. Thermal denaturation studies showed that des-(A1–W14)-SHMT had a lower apparent melting temperature (52°C) compared to rSHMT (56°C) and des-(A1–K6)-SHMT (55 °C), suggesting that N-terminal deletion had resulted in a decrease in the thermal stability of the enzyme. Further, urea induced inactivation of the enzymes revealed that 50% inactivation occurred at a lower urea concentration (1.2 ± 0.1 M) in the case of des-(A1–W14)-SHMT compared to rSHMT (1.8 ±0.1 M) and des-(A1–K6)-SHMT (1.7 ±0.1 M). The apoenzyme of des-(A1- W14)-SHMT was present predominantly in the dimer form, whereas the apoenzymes of rSHMT and des-(A1–K6)-SHMT were a mixture of tetramers (≈75% and ≈65%, respectively) and dimers. While, rSHMT and des-(A1–K6)-SHMT apoenzymes could be reconstituted upon the addition of pyridoxal-5'-phosphate to 96% and 94% enzyme activity, respectively, des-(A1–W14)-SHMT apoenzyme could be reconstituted only upto 22%. The percentage activity regained correlated with the appearance of visible CD at 425 nm and with the amount of enzyme present in the tetrameric form upon reconstitution as monitored by gel filtration. These results demonstrate that, in addition to the cofactor, the N-terminal arm plays an important role in stabilizing the tetrameric structure of SHMT.
Resumo:
The Role Of The Amino And Carboxyl-Terminal Regions Of Cytosolic Serine Hydroxymethyltransferase (SHMT) In Subunit Assembly And Catalysis Was Studied Using Sis Amino-Terminal (Lacking The First 6, 14, 30, 49, 58, And 75 Residues) And Two Carboxyl-Terminal (Lacking The Last 49 And 185 Residues) Deletion Mutants. These Mutants Were Constructed From A Full Length Cdna Clone Using Restriction Enzyme/PCR-Based Methods And Overexpressed In Escherichia Coli. The Overexpressed Proteins, Des-(A1-K6) SHMT And Des-(A1-W14)-SHMT Were Present In The Soluble Fraction And They Were Purified To Homogeneity. The Deletion Clones, For Des-(A1-V30)-SHMT And Des-(A1-L49)-SHMT Were Expressed At Very Low Levels, Whereas Des-(A1-R58)-SHMT, Des-/A1-G75)-SHMT, Des-(Q435-F483)-SHMT And Des-(L299-F483)-SHMT Mutant Proteins Were Not Soluble And Formed Inclusion Bodies. Des-(A1-K6)-SHMT And Des-(A1-W14)-SHMT Catalyzed Both The Tetrahydrofolate-Dependent And Tetrahydrofolate-Independent Reactions, Generating Characteristic Spectral Intermediates With Glycine And Tetrahydrofolate. The Two Mutants Had Similar Kinetic Parameters To That Of The Recombinant SHMT (Rshmt). However, At 55 Degrees C, The Des-(A1-W14)-SHMT Lost Almost All The Activity Within 5 Min, While At The Same Temperature Rshmt And Des-(A1-K6)-SHMT Retained 85% And 70% Activity, Respectively. Thermal Denaturation Studies Showed That Des-(A1-W14)-SHMT Had A Lower Apparent Melting Temperature (52 Degrees C) Compared To Rshmt (56 Degrees C) And Des-(A1-K6)-SHMT (55 Degrees C), Suggesting That N-Terminal Deletion Had Resulted In A Decrease In The Thermal Stability Of The Enzyme. Further Urea Induced Inactivation Of The Enzymes Revealed That 50% Inactivation Occurred At A Lower Urea Concentration (1.2+/-0.1 M) In The Case Of Des-(A1-W14)-SHMT Compared To Rshmt (1.8+/-0.1 M) And Des-(A1 -K6)-SHMT (1.7+/-0.1 M). The Apoenzyme Of Des-/A1-K6)-SHMT Was Present Predominantly In The Dimer Form, Whereas The Apoenzymes Of Rshmt And Des-(A1-K6)-SHMT Were A Mixture Of Tetramers (Approximate To 75% And Approximate To 65%, Respectively) And Dimers. While, Rshmt And Des-(A1-K6)-SHMT Apoenzymes Could Be Reconstituted Upon The Addition Of Pyridoxal-5'-Phosphate To 96% And 94% Enzyme Activity, Respectively Des-(A1-W14)-SHMT Apoenzyme Could Be Reconstituted Only Upto 22%. The Percentage Activity Refined Correlated With The Appearance Of Visible CD At 425 Nm And With The Amount Of Enzyme Present In The Tetrameric Form Upon Reconstitution As Monitored By Gel Filtration. These Results Demonstrate That, In Addition To The Cofactor, The N-Terminal Arm Plays An Important Role In Stabilizing The Tetrameric Structure Of SHMT.