5 resultados para 03010730 CTD-125

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We interpret the recent discovery of a 125 GeV Higgs-like state in the context of a two-Higgs-doublet model with a heavy fourth sequential generation of fermions, in which one Higgs doublet couples only to the fourth-generation fermions, while the second doublet couples to the lighter fermions of the first three families. This model is designed to accommodate the apparent heaviness of the fourth-generation fermions and to effectively address the low-energy phenomenology of a dynamical electroweak-symmetry-breaking scenario. The physical Higgs states of the model are, therefore, viewed as composites primarily of the fourth-generation fermions. We find that the lightest Higgs, h, is a good candidate for the recently discovered 125 GeV spin-zero particle, when tan beta similar to O(1), for typical fourth-generation fermion masses of M-4G = 400-600 GeV, and with a large t-t' mixing in the right-handed quark sector. This, in turn, leads to BR(t' -> th) similar to O(1), which drastically changes the t' decay pattern. We also find that, based on the current Higgs data, this two-Higgs-doublet model generically predicts an enhanced production rate (compared to the Standard Model) in the pp -> h -> tau tau channel, and reduced rates in the VV -> h -> gamma gamma and p (p) over bar /pp -> V -> hV -> Vbb channels. Finally, the heavier CP-even Higgs is excluded by the current data up to m(H) similar to 500 GeV, while the pseudoscalar state, A, can be as light as 130 GeV. These heavier Higgs states and the expected deviations from the Standard Model din some of the Higgs production channels can be further excluded or discovered with more data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We revisit the issue of considering stochasticity of Grassmannian coordinates in N = 1 superspace, which was analyzed previously by Kobakhidze et al. In this stochastic supersymmetry (SUSY) framework, the soft SUSY breaking terms of the minimal supersymmetric Standard Model (MSSM) such as the bilinear Higgs mixing, trilinear coupling, as well as the gaugino mass parameters are all proportional to a single mass parameter xi, a measure of supersymmetry breaking arising out of stochasticity. While a nonvanishing trilinear coupling at the high scale is a natural outcome of the framework, a favorable signature for obtaining the lighter Higgs boson mass m(h) at 125 GeV, the model produces tachyonic sleptons or staus turning to be too light. The previous analyses took Lambda, the scale at which input parameters are given, to be larger than the gauge coupling unification scale M-G in order to generate acceptable scalar masses radiatively at the electroweak scale. Still, this was inadequate for obtaining m(h) at 125 GeV. We find that Higgs at 125 GeV is highly achievable, provided we are ready to accommodate a nonvanishing scalar mass soft SUSY breaking term similar to what is done in minimal anomaly mediated SUSY breaking (AMSB) in contrast to a pure AMSB setup. Thus, the model can easily accommodate Higgs data, LHC limits of squark masses, WMAP data for dark matter relic density, flavor physics constraints, and XENON100 data. In contrast to the previous analyses, we consider Lambda = M-G, thus avoiding any ambiguities of a post-grand unified theory physics. The idea of stochastic superspace can easily be generalized to various scenarios beyond the MSSM. DOI: 10.1103/PhysRevD.87.035022

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of the self-coupling of the 125 GeV Higgs boson is one of the most crucial tasks for a high luminosity run of the LHC, and it can only be measured in the di-Higgs final state. In the minimal supersymmetric standard model, heavy CP even Higgs (H) can decay into a lighter 125 GeV Higgs boson (h) and, therefore, can influence the rate of di-Higgs production. We investigate the role of single H production in the context of measuring the self-coupling of h. We have found that the H -> hh decay can change the value of Higgs (h) self-coupling substantially, in a low tan beta regime where the mass of the heavy Higgs boson lies between 250 and 600 GeV and, depending on the parameter space, it may be seen as an enhancement of the self-coupling of the 125 GeV Higgs boson.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of the minimal supersymmetric standard model (MSSM), we discuss the possibility of the lightest Higgs boson with mass M-h = 98 GeV to be consistent with the 2.3 sigma excess observed at the LEP in the decay mode e(+)e(-) -> Zh, with h -> b (b) over bar. In the same region of the MSSM parameter space, the heavier Higgs boson (H) with mass M-H similar to 125 GeV is required to be consistent with the latest data on Higgs coupling measurements at the end of the 7 + 8 TeV LHC run with 25 fb(-1) of data. While scanning the MSSM parameter space, we impose constraints coming from flavor physics, relic density of the cold dark matter as well as direct dark matter searches. We study the possibility of observing this light Higgs boson in vector boson fusion process and associated production with W/Z-boson at the high luminosity (3000 fb(-1)) run of the 14 TeV LHC. Our analysis shows that this scenario can hardly be ruled out even at the high luminosity run of the LHC. However, the precise measurement of the Higgs signal strength ratios can play a major role to distinguish this scenario from the canonical MSSM one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present up-to-date electroweak fits of various Randall-Sundrum (RS) models. We consider the bulk RS, deformed RS, and the custodial RS models. For the bulk RS case we find the lightest Kaluza-Klein (KK) mode of the gauge boson to be similar to 8 TeV, while for the custodial case it is similar to 3 TeV. The deformed model is the least fine-tuned of all which can give a good fit for KK masses < 2 TeV depending on the choice of the model parameters. We also comment on the fine-tuning in each case.