55 resultados para 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental ionic conductivity of different alkali ions in water shows markedly different dependences on pressure. Existing theories such as that of Hubbard-Onsager are unable to explain these dependences on pressure of the ionic conductivity for all ions. We report molecular dynamics investigation of potassium chloride solution at low dilution in water at several pressures between 1 bar and 2 kbar. Two different potential models have been employed. One of the models successfully reproduces the experimentally observed trend in ionic conductivity of K+ ions in water over the 0.001-2 kbar range. We also propose a theoretical explanation, albeit at a qualitative level, to account for the dependence of ionic conductivity on pressure in terms of the previously studied Levitation Effect. It also provides a microscopic picture in terms of the pore network in liquid water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planar triazinium cationic species from vanadyl-assisted cyclization of 1-(2-thiazolylazo)-2-naphthol (H-TAN, 1), 1-(2-pyridylazo)-2-naphthol (H-PAN, 2), 2-(2'-thiazolylazo)-p-cresol (H-TAC, 3) and 6-(2'-thiazolylazo)- resorcinol (H-TAR, 5) were prepared and characterized. A dioxovanadium(V) species VO2(TAR)] (4) was also isolated. Compounds 1, 2 and 4 were structurally characterized. Both 1 and 2 have planar structures. Complex 4 has (VO3N2)-O-V coordination geometry. The cyclised triazinium compound forms a radical species within -0.06 to -0.29 V vs. SCE in DMF-0.1 M tetrabutylammonium perchlorate with a second response due to formation of an anionic species. A confocal microscopic study showed higher nuclear uptake for 1 having a fused thiazole moiety than 2 with a fused pyridine ring. The compounds showed a partial intercalative mode of binding to calf thymus DNA. Compound 1 showed plasmid DNA photo-cleavage activity under argon and photocytotoxicity in HeLa and MCF-7 cells with IC50 values of 15.1 and 3.4 mu M respectively in visible light of 400-700 nm, while being essentially non-toxic in the dark with IC50 values of 90.4 and 21.9 mu M. ATDDFT study was done to rationalize the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New molecular beam scattering experiments have been performed to measure the total ( elastic plus inelastic) cross sections as a function of the velocity in collisions between water and hydrogen sulfide projectile molecules and the methane target. Measured data have been exploited to characterize the range and strength of the intermolecular interaction in such systems, which are of relevance as they drive the gas phase molecular dynamics and the clathrate formation. Complementary information has been obtained by rotational spectra, recorded for the hydrogen sulfide-methane complex, with a pulsed nozzle Fourier transform microwave spectrometer. Extensive ab initio calculations have been performed to rationalize all the experimental findings. The combination of experimental and theoretical information has established the ground for the understanding of the nature of the interaction and allows for its basic components to be modelled, including charge transfer, in these weakly bound systems. The intermolecular potential for H2S-CH4 is significantly less anisotropic than for H2O-CH4, although both of them have potential minima that can be characterized as `hydrogen bonded'.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new tripodal flexible ligand (L) containing pyrazolyl functionality has been prepared and successfully used to obtain a pd(6) (1) molecular double-square and a cu(3) trigonalbipyramidal cage (2), where complex 1 represents the first example of a double-square obtained using a flexible tripodal ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalized the Enskog theory originally developed for the hard-sphere fluid to fluids with continuous potentials, such as the Lennard–Jones. We derived the expression for the k and ω dependent transport coefficient matrix which enables us to calculate the transport coefficients for arbitrary length and time scales. Our results reduce to the conventional Chapman–Enskog expression in the low density limit and to the conventional k dependent Enskog theory in the hard-sphere limit. As examples, the self-diffusion of a single atom, the vibrational energy relaxation, and the activated barrier crossing dynamics problem are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider how the measurement of top polarization at the Tevatron can be used to characterize and discriminate among different new physics models that have been suggested to explain the anomalous top forward-backward asymmetry reported at the Tevatron. This has the advantage of catching the essence of the parity-violating effect characteristic to the different suggested new physics models. Other observables constructed from these asymmetries are shown to be useful in discriminating between the models, even after taking into account the statistical errors. Finally, we discuss some signals at the 7 TeV LHC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is concerned with a study of an unusual effect due to density of biomass pellets in modern stoves based on close-coupled gasification-combustion process. The two processes, namely, flaming with volatiles and glowing of the char show different effects. The mass flux of the fuel bears a constant ratio with the air flow rate of gasification during the flaming process and is independent of particle density; char glowing process shows a distinct effect of density. The bed temperatures also have similar features: during flaming, they are identical, but distinct in the char burn (gasification) regime. For the cases, wood char and pellet char, the densities are 350, 990 kg/m(3), and the burn rates are 2.5 and 3.5 g/min with the bed temperatures being 1380 and 1502 K, respectively. A number of experiments on practical stoves showed wood char combustion rates of 2.5 +/- 0.5 g/min and pellet char burn rates of 3.5 +/- 0.5 g/min. In pursuit of the resolution of the differences, experimental data on single particle combustion for forced convection and ambient temperatures effects have been obtained. Single particle char combustion rate with air show a near-d(2) law and surface and core temperatures are identical for both wood and pellet char. A model based on diffusion controlled heat release-radiation-convection balance is set up. Explanation of the observed results needs to include the ash build-up over the char. This model is then used to explain observed behavior in the packed bed; the different packing densities of the biomass chars leading to different heat release rates per unit bed volume are deduced as the cause of the differences in burn rate and bed temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Syntheses of manganese(I)-based molecular squares have been accomplished in facile one-pot reaction conditions at room temperature. Self-assembly of eight components has resulted in the formation of M4L4-type metallacyclophanes [Mn(CO)(3)Br(mu-L)(4) (1-3) using pentacarbonylbromomanganese as metal precursor and rigid azine ligands such as pyrazine, 4,4'-bipyridine, and trans-1,2-bis(4pyridyl)ethylene, respectively, as bridging ligands. The metallacyclophanes have been characterized on the basis of IR, NMR, and UV-vis spectroscopic techniques and single-crystal X-ray diffraction methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2 nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2 x 10(5)) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small quantity of energetic material coated on the inner wall of a polymer tube is proposed as a new method to generate micro-shock waves in the laboratory. These micro-shock waves have been harnessed to develop a novel method of delivering dry particle and liquid jet into the target. We have generated micro-shock waves with the help of reactive explosive compound high melting explosive (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and traces of aluminium] coated polymer tube, utilising 9 J of energy. The detonation process is initiated electrically from one end of the tube, while the micro-shock wave followed by the products of detonation escape from the open end of the polymer tube. The energy available at the open end of the polymer tube is used to accelerate tungsten micro-particles coated on the other side of the diaphragm or force a liquid jet out of a small cavity filled with the liquid. The micro-particles deposited on a thin metal diaphragm (typically 100-mu m thick) were accelerated to high velocity using micro-shock waves to penetrate the target. Tungsten particles of 0.7 mu m diameter have been successfully delivered into agarose gel targets of various strengths (0.6-1.0 %). The device has been tested by delivering micro-particles into potato tuber and Arachis hypogaea Linnaeus (ground nut) stem tissue. Along similar lines, liquid jets of diameter 200-250 mu m (methylene blue, water and oils) have been successfully delivered into agarose gel targets of various strengths. Successful vaccination against murine salmonellosis was demonstrated as a biological application of this device. The penetration depths achieved in the experimental targets are very encouraging to develop a future device for biological and biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized top-spin analysis proposed some time ago in the context of the standard model and subsequently studied in varying contexts is now applied primarily to the case of e(+)e(-) -> t (tww) over bar with transversely polarized beams. This extends our recent work with new physics couplings of scalar (S) and tensor (T) types. We carry out a comprehensive analysis assuming only the electron beam to be transversely polarized, which is sufficient to probe these interactions, and also eliminates any azimuthal angular dependence due to the standard model or new physics of the vector (V) and axial-vector (A) type interactions. We then consider new physics of the general four-Fermi type of V and A type with both beams transversely polarized and discuss implications with longitudinal polarization as well. The generalized spin bases are all investigated in the presence of either longitudinal or transverse beam polarization to look for appreciable deviation from the SM prediction in case of the new physics. 90% confidence level limits are obtained on the interactions for the generalized spin bases with realistic integrated luminosity. In order to achieve this we present a general discussion based on helicity amplitudes and derive a general transformation matrix that enables us to treat the spin basis. We find that beamline basis combined with transverse polarization provides an excellent window of opportunity both for S, T and V, A new physics, followed by the off-diagonal basis. The helicity basis is shown to be the best in case of longitudinal polarization to look for new physics effects due to V and A. DOI: 10.1103/PhysRevD.86.114019