6 resultados para 002:519.2

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: This study examined the association of -866G/A, Ala55Val, 45bpI/D, and -55C/T polymorphisms at the uncoupling protein (UCP) 3-2 loci with type 2 diabetes in Asian Indians. Methods: A case-control study was performed among 1,406 unrelated subjects (487 with type 2 diabetes and 919 normal glucose-tolerant NGT]), chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in Southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Haplotype frequencies were estimated using an expectation-maximization algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. Results: The genotype (P = 0.00006) and the allele (P = 0.00007) frequencies of Ala55Val of the UCP2 gene showed a significant protective effect against the development of type 2 diabetes. The odds ratios (adjusted for age, sex, and body mass index) for diabetes for individuals carrying Ala/Val was 0.72, and that for individuals carrying Val/Val was 0.37. Homeostasis insulin resistance model assessment and 2-h plasma glucose were significantly lower among Val-allele carriers compared to the Ala/Ala genotype within the NGT group. The genotype (P = 0.02) and the allele (P = 0.002) frequencies of -55C/T of the UCP3 gene showed a significant protective effect against the development of diabetes. The odds ratio for diabetes for individuals carrying CT was 0.79, and that for individuals carrying TT was 0.61. The haplotype analyses further confirmed the association of Ala55Val with diabetes, where the haplotypes carrying the Ala allele were significantly higher in the cases compared to controls. Conclusions: Ala55Val and -55C/T polymorphisms at the UCP3-2 loci are associated with a significantly reduced risk of developing type 2 diabetes in Asian Indians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structures of two polymorphs and two polymorphic hemihydrates of Etoricoxib are reported. Etoricoxib is a non-steroidal anti-inflammatory drug (NSAID) that is a selective inhibitor of COX-2. It is used in the treatment of various types of inflammation, pain and fever. Clas et al. have reported four polymorphs (labeled I through IV) and two solvates (hemi-and sesquihydrate) of the API in US patent 6,441,002 (Clas et al, US patent 6,441,002, 2002). However, no crystal structures have been reported for any of these forms. A comparison was made between the PXRD patterns reported in patent `002 and the powder spectra simulated from single crystal data. The two polymorphs characterized here correspond to form I and form IV of the patent. Form II of the patent could not be obtained by us with a variety of experimental conditions. Form III of the patent corresponds to hemihydrate II of this study. Form III is therefore not a polymorph of form I and form IV. What we have termed hemihydrate I in this study is obtained under a wide variety of conditions and it is also the only hemihydrate reported as such in the patent. Because the Etoricoxib molecule contains no conventional hydrogen bond donors, there cannot be any strong hydrogen bonds in the crystal structures of forms I and IV. The packing is accordingly characterized by weak hydrogen bonds of the C-H center dot center dot center dot O=S and C-H center dot center dot center dot N type. Thermal data were collected for form I, form IV and hemihydrate I to shed some light on relative stabilities. PXRD diffractograms show the transformation of form IV to form I at elevated temperature, indicating that form I is more stable than form IV. However, this transformation occurs only in samples of form IV that contain some form I; it does not occur in pure form IV. The formation of the two hemihydrates could follow from the known tendency of an acceptor-rich molecule to crystallize as a hydrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, ZnFe2O4 nanoparticles were synthesized by the chemical co-precipitation followed by calcinations at 473 and 673K for 4h. Particle sizes obtained were 4 and 6nm for the calcination temperatures of 473 and 673K, respectively. To study the origin of system's low temperature spin dynamic behaviour, temperature dependence of susceptibility was investigated as a function of particle size and frequency. Slight increase in the grain size from 4nm at 473K to 6nm at 673K has led to a peak shift of temperature dependence of susceptibility measured at a constant frequency of 400Hz. Temperature dependence of at different frequencies also resulted in peak shift. Relaxation time dependence of peak temperature obeys a power law, which provides the fitting parameters within the range of superparamagnetic nature of the particles. Further, dependence of relaxation time and peak temperature obeys VogelFulcher law rather than NeelBrown equation demonstrating that the particles follow the behaviour of superparamagnetism of slightly interacting system. Spinlattice, T-1 and spinspin, T-2 relaxivity of proton of the water molecule in the presence of chitosan-coated superparamagnetic ZnFe2O4 nanoparticle yields the values of 0.002 and 0.360s(1)perppm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2,3-Unsaturated 3-arylsulfinyl pyranosides undergo nucleophilic additions at C-2, with facial selectivities depending on the nucleophile and the substituent on sulfinyl sulfur. The reactions of such sugar vinyl sulfoxides lead to the addition of nucleophile preferring an axial orientation at C-2, with concomitant formation of an allylic bond at C-3 to C-4. This trend in the addition pattern is observed for primary amine, carbon and sulfur nucleophiles, whereas secondary amines prefer an equatorial addition at C-2. The effect of p-tolylthio-versus (p-isopropylphenyl)thio vinyl sulfoxide is that the equatorial nucleophilic addition is preferred even more with the latter vinyl sulfoxide. (C) 2013 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monophasic Ba2NaNb5O15 was crystallized at nanometer scale (12-36 nm) in 2BaO-0.5Na(2)O-2.5Nb(2)O(5)- 4.5B(2)O(3) glass system. To begin with, optically transparent glasses, in this system, were fabricated via the conventional melt. quenching technique. The amorphous and glassy characteristics of the as-quenched samples were respectively confirmed by X-ray powder diffraction and differential thermal analyses. Nearly homogeneous distribution of Ba2NaNb5O15 (BNN) nanocrystals associated with tungsten bronze structure akin to their bulk parent structure was accomplished by subjecting the as-fabricated glasses to appropriate heat-treatment temperatures. Indeed transmission electron microscopy (TEM) carried out on these samples corroborated the presence of Ba2NaNb5O15 nanocrystals dispersed in a continuous glass matrix. The as-quenched glasses were similar to 75% transparent in the visible range of the electromagnetic spectrum. The optical band gap and refractive index were found to have crystallite size (at nanoscale) dependence. The optical band gap increased with the decrease in crystallite size. The refractive indices of the glass nanocrystal composites as determined by Brewster angle method were rationalized using different empirical models. The refractive index dispersion with wavelength of light was analyzed on the basis of the Sellmeier relations. At room temperature under UV excitation (355 nm) these glass nanocrystal composites displayed violet-blue emission which was ascribed to the defects states.