22 resultados para (Acmella oleracea (L) R.K. Jansen) adubação

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparative population dynamics study of three closely related species of buttercups (Ranunculus repens, R. acris, and R. bulbosus). The study is based on an investigation of the behaviour of the seeds in soil under field conditions and a continuous monitoring of survival and reproduction of some 9000 individual plants over a period of 21/2 years in a coastal grassland in North Wales. The data were analysed with the help of an extension of Leslie's matrix method which makes possible an simultaneous treatment of vegetative and sexual reproduction. It was found that R. repens (a) depends more heavily on vegetative as compared with sexual reproduction, (b) shows indications of negatively density-dependent population regulation, and (c) exhibits little variation in population growth rates from site to site and from one year to the next. In contrast, R. bulbosus (a) depends exclusively on sexual reproduction, (b) shows indications of a positively density-dependent population behaviour, and (c) exhibits great variation in population growth rates from site to site and from one year to the next. R. acris exhibits an intermediate behaviour in all these respects. It is suggested that the attributes of R. repens are those expected of a species inhabiting a stable environment, while R. bulbosus exhibits some of the characteristics of a fugitive species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a new dictionary learning algorithm called the l(1)-K-svp, by minimizing the l(1) distortion on the data term. The proposed formulation corresponds to maximum a posteriori estimation assuming a Laplacian prior on the coefficient matrix and additive noise, and is, in general, robust to non-Gaussian noise. The l(1) distortion is minimized by employing the iteratively reweighted least-squares algorithm. The dictionary atoms and the corresponding sparse coefficients are simultaneously estimated in the dictionary update step. Experimental results show that l(1)-K-SVD results in noise-robustness, faster convergence, and higher atom recovery rate than the method of optimal directions, K-SVD, and the robust dictionary learning algorithm (RDL), in Gaussian as well as non-Gaussian noise. For a fixed value of sparsity, number of dictionary atoms, and data dimension, l(1)-K-SVD outperforms K-SVD and RDL on small training sets. We also consider the generalized l(p), 0 < p < 1, data metric to tackle heavy-tailed/impulsive noise. In an image denoising application, l(1)-K-SVD was found to result in higher peak signal-to-noise ratio (PSNR) over K-SVD for Laplacian noise. The structural similarity index increases by 0.1 for low input PSNR, which is significant and demonstrates the efficacy of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friction has an important influence in metal forming operations, as it contributes to the success or otherwise of the process. In the present investigation, the effect of friction on metal forming was studied by simulating compression tests on cylindrical Al-Mg alloy using the finite element method (FEM) technique. Three kinds of compression tests were considered wherein a constant coefficient of friction was employed at the upper die-work-piece interface. However, the coefficient of friction between the lower die-work-piece interfaces was varied in the tests. The simulation results showed that a difference in metal flow occurs near the interfaces owing to the differences in the coefficient of friction. It was concluded that the variations in the coefficient of friction between the dies and the work-piece directly affect the stress distribution and shape of the work-piece, having implications on the microstructure of the material being processed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the multitude of test specimen geometries used for dynamic fiacture toughness evaluation, the most widely uscd specimen is lhc Chavpy specimen due its simple geomclry and availability of testing machines. The standard Chatpy specimen dimensions may llOl always give plane st~ain condilions and hence, it may be necessary Io coilduct lcs/s using specimens of dillEvcnt thicknesses to establish the plane strain K~a. An axisymmct/ic specimen, on the otlaev hand would always give flow constraints l~n a nominal specimen thickness i~rcspcctive of the test matctial. The notched disk specimen pVOl)oscd by Bcrn:ud ctal. [1] for static and dynamic initiation toughness measurement although p~ovicles plain-strain conditions, the crack plopagatcs at an angle to the direction of applied load. This makes inteq~retation of the test results difficult us it ~Ccluivcs ~actial slices to be cut fiom the fractured specimen to ascertain the angle o1 crack growth and a linite element model l~)r tl);t{ pa~ticulat ctack o~icntalion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unit cube in k-dimension (or a k-cube) is defined as the Cartesian product R-1 x R-2 x ... x R-k, where each R-i is a closed interval on the real line of the form [a(j), a(i), + 1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. Many NP-complete graph problems can be solved efficiently or have good approximation ratios in graphs of low cubicity. In most of these cases the first step is to get a low dimensional cube representation of the given graph. It is known that for graph G, cub(G) &lt;= left perpendicular2n/3right perpendicular. Recently it has been shown that for a graph G, cub(G) >= 4(Delta + 1) In n, where n and Delta are the number of vertices and maximum degree of G, respectively. In this paper, we show that for a bipartite graph G = (A boolean OR B, E) with |A| = n(1), |B| = n2, n(1) &lt;= n(2), and Delta' = min {Delta(A),Delta(B)}, where Delta(A) = max(a is an element of A)d(a) and Delta(B) = max(b is an element of B) d(b), d(a) and d(b) being the degree of a and b in G, respectively , cub(G) &lt;= 2(Delta' + 2) bar left rightln n(2)bar left arrow. We also give an efficient randomized algorithm to construct the cube representation of G in 3 (Delta' + 2) bar right arrowIn n(2)bar left arrow dimension. The reader may note that in general Delta' can be much smaller than Delta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A k-cube (or ``a unit cube in k dimensions'') is defined as the Cartesian product R-1 x . . . x R-k where R-i (for 1 &lt;= i &lt;= k) is an interval of the form [a(i), a(i) + 1] on the real line. The k-cube representation of a graph G is a mapping of the vertices of G to k-cubes such that the k-cubes corresponding to two vertices in G have a non-empty intersection if and only if the vertices are adjacent. The cubicity of a graph G, denoted as cub(G), is defined as the minimum dimension k such that G has a k-cube representation. An interval graph is a graph that can be represented as the intersection of intervals on the real line - i. e., the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. We show that for any interval graph G with maximum degree Delta, cub(G) &lt;= inverted right perpendicular log(2) Delta inverted left perpendicular + 4. This upper bound is shown to be tight up to an additive constant of 4 by demonstrating interval graphs for which cubicity is equal to inverted right perpendicular log(2) Delta inverted left perpendicular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A k-dimensional box is the Cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G) is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. Halin graphs are the graphs formed by taking a tree with no degree 2 vertex and then connecting its leaves to form a cycle in such a way that the graph has a planar embedding. We prove that if G is a Halin graph that is not isomorphic to K-4, then box(G) = 2. In fact, we prove the stronger result that if G is a planar graph formed by connecting the leaves of any tree in a simple cycle, then box(G) = 2 unless G is isomorphic to K4 (in which case its boxicity is 1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986)] that the Euler Painlevé equation yy[script `]+ay[script ']2+ f(x)yy[script ']+g(x) y2+by[script ']+c=0 represents the generalized Burgers equations (GBE's) in the same manner as Painlevé equations do the KdV type. The GBE was treated with a damping term in some detail. In this paper another GBE ut+uaux+Ju/2t =(gd/2)uxx (the nonplanar Burgers equation) is considered. It is found that its self-similar form is again governed by the Euler Painlevé equation. The ranges of the parameter alpha for which solutions of the connection problem to the self-similar equation exist are obtained numerically and confirmed via some integral relations derived from the ODE's. Special exact analytic solutions for the nonplanar Burgers equation are also obtained. These generalize the well-known single hump solutions for the Burgers equation to other geometries J=1,2; the nonlinear convection term, however, is not quadratic in these cases. This study fortifies the conjecture regarding the importance of the Euler Painlevé equation with respect to GBE's. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results are presented of applying multi-time scale analysis using the singular perturbation technique for long time simulation of power system problems. A linear system represented in state-space form can be decoupled into slow and fast subsystems. These subsystems can be simulated with different time steps and then recombined to obtain the system response. Simulation results with a two-time scale analysis of a power system show a large saving in computational costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An axis-parallel k-dimensional box is a Cartesian product R-1 x R-2 x...x R-k where R-i (for 1 &lt;= i &lt;= k) is a closed interval of the form [a(i), b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension k, such that G is representable as the intersection graph of (axis-parallel) boxes in k-dimensional space. The concept of boxicity finds applications in various areas such as ecology, operations research etc. A number of NP-hard problems are either polynomial time solvable or have much better approximation ratio on low boxicity graphs. For example, the max-clique problem is polynomial time solvable on bounded boxicity graphs and the maximum independent set problem for boxicity d graphs, given a box representation, has a left perpendicular1 + 1/c log n right perpendicular(d-1) approximation ratio for any constant c >= 1 when d >= 2. In most cases, the first step usually is computing a low dimensional box representation of the given graph. Deciding whether the boxicity of a graph is at most 2 itself is NP-hard. We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in left perpendicular(Delta + 2) ln nright perpendicular dimensions, where Delta is the maximum degree of G. This algorithm implies that box(G) &lt;= left perpendicular(Delta + 2) ln nright perpendicular for any graph G. Our bound is tight up to a factor of ln n. We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm. Though our general upper bound is in terms of maximum degree Delta, we show that for almost all graphs on n vertices, their boxicity is O(d(av) ln n) where d(av) is the average degree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unit cube in k dimensions (k-cube) is defined as the Cartesian product R-1 x R-2 x ... x R-k where R-i (for 1 <= i <= k) is a closed interval of the form [a(i), a(i) + 1] on the real line. A graph G on n nodes is said to be representable as the intersection of k-cubes (cube representation in k dimensions) if each vertex of C can be mapped to a k-cube such that two vertices are adjacent in G if and only if their corresponding k-cubes have a non-empty intersection. The cubicity of G denoted as cub(G) is the minimum k for which G can be represented as the intersection of k-cubes. An interesting aspect about cubicity is that many problems known to be NP-complete for general graphs have polynomial time deterministic algorithms or have good approximation ratios in graphs of low cubicity. In most of these algorithms, computing a low dimensional cube representation of the given graph is usually the first step. We give an O(bw . n) algorithm to compute the cube representation of a general graph G in bw + 1 dimensions given a bandwidth ordering of the vertices of G, where bw is the bandwidth of G. As a consequence, we get O(Delta) upper bounds on the cubicity of many well-known graph classes such as AT-free graphs, circular-arc graphs and cocomparability graphs which have O(Delta) bandwidth. Thus we have: 1. cub(G) <= 3 Delta - 1, if G is an AT-free graph. 2. cub(G) <= 2 Delta + 1, if G is a circular-arc graph. 3. cub(G) <= 2 Delta, if G is a cocomparability graph. Also for these graph classes, there axe constant factor approximation algorithms for bandwidth computation that generate orderings of vertices with O(Delta) width. We can thus generate the cube representation of such graphs in O(Delta) dimensions in polynomial time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986); P. L. Sachdev and K. R. C. Nair, ibid. 28, 977 (1987)] that the Euler–Painlevé equations  y(d2y/dη2)+a(dy/dη)2 +f(η)y(dy/dη)+g(η)y2+b(dy/dη) +c=0 represent generalized Burgers equations (GBE’s) in the same way as Painlevé equations represent the Korteweg–de Vries type of equations. The earlier studies were carried out in the context of GBE’s with damping and those with spherical and cylindrical symmetry. In the present paper, GBE’s with variable coefficients of viscosity and those with inhomogeneous terms are considered for their possible connection to Euler–Painlevé equations. It is found that the Euler–Painlevé equation, which represents the GBE ut+uβux=(δ/2)g(t)uxx, g(t)=(1+t)n, β>0, has solutions, which either decay or oscillate at η=±∞, only when −1lutions are shocklike when n=1. On the other hand, they oscillate over the whole real line when n=−1. Furthermore, the solutions monotonically decay both at η=+∞ and η=−∞, that is, they have a single hump form if β≥βn=(1−n)/(1+n). For β<βn, the solutions have an oscillatory behavior either at η=+∞ or at η=−∞, or at η=+∞ and η=−∞. For β=βn, there exists a single parameter family of exact single hump solutions, similar to those found for the nonplanar Burgers equations in Paper II. Thus the parametric value β=βn seems to bifurcate the families of solutions, which remain bounded at η=±∞. Other GBE’s considered here are also found to be reducible to Euler–Painlevé equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A k-dimensional box is the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval oil the real line of the form a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-cubes. The threshold dimension of a graph G(V, E) is the smallest integer k such that E can be covered by k threshold spanning subgraphs of G. In this paper we will show that there exists no polynomial-time algorithm for approximating the threshold dimension of a graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. From this result we will show that there exists no polynomial-time algorithm for approximating the boxicity and the cubicity of a graph on n vertices with factor O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. In fact all these hardness results hold even for a highly structured class of graphs, namely the split graphs. We will also show that it is NP-complete to determine whether a given split graph has boxicity at most 3. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 15-residue apolar peptide, Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-(Val-Ala-Leu-Aib)h2a-sO Mebeen crystallized from 2-propanol-water (form I). The crystal parameters for I are as follows:C74H133N15018*2H20s,p ace group P21, a = 9.185 (6) A, b = 47.410 (3) A, c = 10.325 (9) A, @ = 91.47(2)O, 2 = 2, R = 6.3% for 4532 reflections observed >3aQ, resolution 0.94 A. The structure isalmost completely a-helical with eleven 5-1 hydrogen bonds and one 441 hydrogen bond nearthe N-terminus. The structure has been compared with a polymorph (form 11) obtained frommethanol-water (Karle, I. L.; Flippen-Anderson, J. L.; Uma, K.; Sukumar, M.; Balaram, P., J. An.Chem. SOC19. 90,112,9350-9356). The two forms differ in the extent of hydration; form I contains two water molecules in the head-to-tail region of helical columns, while form I1 is more extensively solvated, with the equivalent of 7.5 water molecules. The three-dimensional packing of helices is completely parallel in I and antiparallel in 11.