339 resultados para ultraviolet laser induction
Resumo:
The optimization of a photovoltaic pumping system based on an induction motor driven pump that is powered by a solar array is presented in this paper. The motor-pump subsystem is analyzed from the point of view of optimizing the power requirement of the induction motor, which has led to an optimum u-f relationship useful in controlling the motor. The complete pumping system is implemented using a dc-dc converter, a three-phase inverter, and an induction motor-pump set. The dc-dc converter is used as a power conditioner and its duty cycle is controlled so as to match the load to the array. A microprocessor-based controller is used to carry out the load-matching.
Resumo:
The development work for producing an automobile component by thixocasting using A356.2 alloy was introduced. As the first step, the alloy was electromagnetically stirred and solidified to produce a billet with non-dendritic microstructure. The microstructure depended on several process parameters such as stirring intensity, stirring frequency, cooling rate, and melt initial superheat. Through a series of computational studies and controlled experiments, a set of process parameters were identified to produce the best microstructures. Reheating of a billet with non-dendritic microstructure to a semisolid temperature was the next step for thixo-casting of the components. The reheating process was characterized for various reheating cycles using a vertical-type reheating machine. The induction heating cycle was optimized to obtain a near-uniform temperature distribution in radial as well as axial direction of the billet, and the heating was continued until the liquid fraction reached about 50%. These parameters were determined with the help of a computational fluid dynamics (CFD) model of die filling and solidification of the semisolid alloy. The heated billets were subsequently thixo-cast into automobile components using a real-time controlled die casting machine. The results show that the castings are near net shape, free from porosity, good surface finish and have superior mechanical properties compared to those produced by conventional die casting processes using the same alloy.
Resumo:
Cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 thin films were deposited by pulsed laser ablation on Pt(200)/SiO2/Si at 500, 550, 600, and 650 degrees C. The thin films with (222) preferred orientation were found to grow at 650 degrees C with better crystallinity which was established by the lowest full-width half maxima of similar to 0.38. The dielectric response of the thin films grown at 650 degrees C have been characterized within a temperature range of 270-650 K and a frequency window of 0.1-100 kHz. The dielectric dispersion in the thin films shows a Maxwell-Wagner type relaxation with two different kinds of response confirmed by temperature dependent Nyquist plots. The ac conduction of the films showed a varied behavior in two different frequency regions. The power law exponent values of more than 1 at high frequency are explained by a jump-relaxation-model. The possibility of grain boundary related large polaronic hopping, due to two different power law exponents and transformation of double to single response in Nyquist plots at high temperature, has been excluded. The ``attempt jump frequency'' obtained from temperature dependent tangent loss and real part of dielectric constants, has been found to lie in the range of their lattice vibronic frequencies (10(12)-10(13) Hz). The activation energy arising from a large polaronic hopping due to trapped charge at low frequency region has been calculated from the ac conduction behavior. The range of activation energies (0.26-0.59. eV) suggests that the polaronic hopping at low frequency is mostly due to oxygen vacancies. (C) 2010 American Institute of Physics. doi:10.106311.3457335]
Resumo:
A variety of applications exist for reverse saturable absorbers (RSAs) in the area of optical pulse processing and computing. An RSA can be used as power limiter/pulse smoother and energy limiter/pulse shortner of laser pulses. A combination of RSA and saturable absorber (SA) can be used for mode locking and pulse shaping between high power laser amplifiers in oscillator amplifier chain. Also, an RSA can be used for the construction of a molecular spatial light modulator (SLM) which acts as an input/output device in optical computers. A detailed review of the theoretical studies of these processes is presented. Current efforts to find RSAs at desired wavelength for testing these theoretical predictions are also discussed.
Resumo:
Excimer laser irradiation at ambient temperature has been employed to produce nanostructured silicon surfaces. Nanoindentation was used to investigate the nanomechanical properties of the deformed surfaces as a function of laser parameters, such as the angle of incidence and number of laser pulses at a fixed laser fluence of 5 J cm(-2). A single-crystal silicon 311] surface was severely damaged by laser irradiation and became nanocrystalline with an enhanced porosity. The resulting laser-treated surface consisted of nanometer-sized particles. The pore size was controlled by adjusting the angle of incidence and the number of laser pulses, and varied from nanometers to microns. The extent of nanocrystallinity was large for the surfaces irradiated at a small angle of incidence and by a high number of pulses, as confirmed by x-ray diffraction and Raman spectroscopy. The angle of incidence had a stronger effect on the structure and nanomechanical properties than the number of laser pulses.
Resumo:
An ultraviolet photoelectron spectrometer for the study of van der Waals molecules has been designed and fabricated indigenously. The spectrometer consists of an HeI discharge lamp, a molecular beam sample inlet system, an electrostatic lens, a 180-degrees hemispherical electrostatic analyser and a channeltron detector. Performance of the spectrometer is illustrated with an example.
Resumo:
The vacuum ultraviolet circular dichroism spectrum of an isolated 4 → 1 hydrogen bonded β-turn is reported. The observed spectrum of N-acetyl-Pro-Gly-Leu-OH at − 40°C in trifluoroethanol is in good agreement with the theoretically calculated CD spectrum of the β-turn conformation. This spectrum, particularly the presence of a strong negative band around 180 nm and a large ratio [θ]201/[θ]225, can be taken as a characteristic feature of the isolated β-turn conformation. These CD spectral features can thus be used to distinguish the β-turn conformation from the β-structure in solution.
Resumo:
We demonstrate launching of laser-cooled Yb atoms in a cold atomic fountain. Atoms in a collimated thermal beam are first cooled and captured in a magneto-optical trap (MOT) operating on the strongly allowed S-1(0) -> P-1(1) transition at 399 nm (blue line). They are then transferred to a MOT on the weakly allowed S-1(0) -> P-3(1) transition at 556 nm (green line). Cold atoms from the green MOT are launched against gravity at a velocity of around 2.5 m/s using a pair of green beams. We trap more than 107 atoms in the blue MOT and transfer up to 70% into the green MOT. The temperature for the odd isotope Yb-171 is similar to 1 mK in the blue MOT, and reduces by a factor of 40 in the green MOT.
Resumo:
In this paper, a new five-level inverter topology for open-end winding induction-motor (IM) drive is proposed. The open-end winding IM is fed from one end with a two-level inverter in series with a capacitor-fed H-bridge cell, while the other end is connected to a conventional two-level inverter. The combined inverter system produces voltage space-vector locations identical to that of a conventional five-level inverter. A total of 2744 space-vector combinations are distributed over 61 space-vector locations in the proposed scheme. With such a high number of switching state redundancies, it is possible to balance the H-bridge capacitor voltages under all operating conditions including overmodulation region. In addition to that, the proposed topology eliminates 18 clamping diodes having different voltage ratings compared with the neutral point clamped inverter. On the other hand, it requires only one capacitor bank per phase, whereas the flying-capacitor scheme for a five-level topology requires more than one capacitor bank per phase. The proposed inverter topology can be operated as a three-level inverter for full modulation range, in case of any switch failure in the capacitor-fed H-bridge cell. This will increase the reliability of the system. The proposed scheme is experimentally verified on a four-pole 5-hp IM drive.
Resumo:
Laser sintering was carried out using a high power continuous-wave CO2 laser to prepare pellets of zirconia (ZrO2), hafnia (HfO2) and yttria (Y2O3) mixed oxides as starting materials in the deposition of optical coatings. Hardened recrystallized pellets appeared to have been formed during laser treatment. X-ray diffraction analysis revealed a monoclinic-to-tetragonal phase transformation in the binary system while the ternary system was found to have a mixture of two crystalline phases. Cross-sectional scanning electron microscopy showed two isothermal crystalline regions in the ternary system. The optical inhomogeneity was low in the films deposited from the laser-fused pellets, but the absorption at a wavelength of 351 nm increased with increasing HfO2 content. The films deposited from laser-fused pellets were analysed by electron spectroscopy for chemical analysis and found to be stoichiometric and homogeneous.
Resumo:
A generalized two‐dimensional flow‐radiation coupled model to extract power from a gasdynamic laser is proposed. The model is used for the study of power extraction from a 9.4‐μm CO2 downstream‐mixing gasdynamic laser, where a cold CO2+H2 stream is mixed with a vibrationally excited N2 stream at the nozzle exits. This model is developed by coupling radiation with the two‐dimensional, unsteady, laminar and viscous flow modeling needed for such systems. The analysis showed that the steady‐state value of 9.4‐μm intensity as high as 5×107 W/m2 can be obtained from the system studied. The role of H2 relaxant in the power extraction process has also been investigated.
Resumo:
X-ray and ultraviolet photoelectron spectroscopy have been employed to investigate the high temperature metal-insulator transitions in V2O3 and (V0.99Cr0.01)2O3. The high temperature transitions are associated with more gradual changes in the 3d bands compared to the low-temperature transitions