177 resultados para titanium dioxide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium solubilities of the solids in supercritical carbon dioxide (SCCO(2)) are considerably enhanced in the presence of cosolvents. The solubilities of m-dinitrobenzene at 308 and 318 K over a pressure range of 9.5-14.5 MPa in the presence of 1.13-2.17 mol% methanol as cosolvent were determined. The average increase in the solubilities in the presence of methanol compared to that obtained in the absence of methanol was around 35%. A new semi-empirical equation in terms of temperature, pressure, density of SCCO(2) and cosolvent composition comprising of 7 adjustable parameters was developed. The proposed model was used to correlate the solubility of the solids in SCCO(2) for the 44 systems available in the literature along with current data. The average absolute relative deviation of the experimental data from the model equation was 3.58%, which is better than the existing models. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology for evaluating the reactivity of titanium with mould materials during casting has been developed. Microhardness profiles and analysis of oxygen contamination have provided an index for evaluation of the reactivity of titanium. Microhardness profile delineates two distinct regions, one of which is characterised by a low value of hardness which is invariant with distance. The reaction products are uniformly distributed in the metal in this region. The second is characterised by a sharp decrease in microhardness with distance from the metal-mould interface. It represents a diffusion zone for solutes that dissolve into titanium from the mould. The qualitative profiles for contaminants determined by scanning electron probe microanalyser and secondary ion mass spectroscopy in the as-cast titanium were found to be similar to that of microhardness, implying that microhardness can be considered as an index of the contamination resulting from metal-mould reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-mold reaction during Ti casting in zircon sand molds has been studied using scanning electron microscope, energy and wave length dispersive analysis of X-rays, X-ray diffraction, microhardness measurements, and chemical analysis. Experimental results suggest that oxides from the mold are not fully leached out by liquid Ti, but oxygen is preferentially transferred to liquid Ti, leaving behind metallic constituents in the mold as lower oxides or intermetallics of Ti. The electron microprobe analysis has revealed the depth profile of contaminants from the mold into the cast Ti metal. The elements Si, Zr and O were found to have diffused to a considerable distance within the Ti metals. A possible mechanism has now been evolved in regard to the reactions that occur during casting of Ti in zircon sand molds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental observations of casting titanium in sodium silicate bonded zircon sand mould are presented in this paper. Metal-mould reactions, in general, involved dissolution of oxides in liquid titanium resulting in contamination of the casting. Minimal metal-mould reactions occurred when titanium was cast in zircon sand mould containing about 7.5 wt% of ZrO2. It has been further shown that the metal-mould reaction is considerably reduced if moulds were fired at high temperatures (> 1273K). This ensured elimination of moisture from the mould and also resulted in some beneficial changes in the mould chemistry. The reduction in metal-mould reaction is reflected in the decrease in oxygen and hydrogen contamination and decrease in hardness. Thus microhardness profile and oxygen analysis seems to provide a good index for evaluation of severity of metal-mould reaction. The method has been demonstrated to be satisfactory for casting titanium components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lanthanide metals lanthanum, praseodymium and neodymium containing 2,200, 2,600, 1,850 mass ppm oxygen, respectively, were deoxidized to 20-30 ppm level at 1,073 K by an electrochemical method. The metal to be deoxidized was used as the cathode in an electrolysis cell which consisted of a graphite anode and molten CaCl2 electrolyte. The calcium metal produced at the cathode by electrolysis effectively deoxidized the lanthanide metal. Calcium oxide produced by deoxidation, dissolved in the melt. The liberation of carbon monoxide/dioxide at the anode was found to prevent accumulation of oxygen in the melt. For a quantitative discussion of the limits of deoxidation achievable by this technique, a thermodynamic investigation of the lanthanide-oxygen (Ln-O ; Ln = La, Pr, Nd) solid solutions was conducted. The lanthanide metal, yttrium and titanium samples were immersed in calcium-saturated CaCl2 melt, containing a small quantity of dissolved CaO, at 1,093 K. The oxygen potential of the melt and the Ln-O solid solutions were obtained from the oxygen content of yttrium samples at equilibrium, and the known thermodynamic properties of yttrium-oxygen solid solution. The results were confirmed by using Y/Y2O3 equilibrium to control the oxygen potential of the molten salt reservoir. The oxygen affinity of the metals was found to decrease in the order : Y > Ti > Nd > Pr > La. The deoxidation results are consistent with the thermodynamic properties of the RE-O solid solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The removal of oxygen from rare-earth metals (RE, RE=Gd, Tb, Dy, Er) by an electrochemical deoxidation method was investigated. A titanium basket containing the rare-earth metal sample, submerged in molten CaCl2 electrolyte, formed the cathode of an electrolysis cell. A high-purity graphite anode was used. The calcium metal produced at the cathode effectively deoxidized the rare-earth metal. Carbon monoxide and dioxide were generated at the graphite anode. Rare-earth metals containing more than 2000 mass ppm oxygen were deoxidized to 10–50 mass ppm level by electrolysis at 1189 K for 36 ks (10 h). Cyclic voltammetry was used to characterize the molten salt at different stages of the process. The effectiveness of the process is discussed with the aid of a chemical potential diagram for RE–O solid solutions. The new electrochemical technique is compared with the conventional deoxidation methods reported in the literature. The possibility of nitrogen removal from the rare-earth metals by the electrochemical method is outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of deposition temperature on residual stress evolution with temperature in Ti-rich NiTi films deposited on silicon substrates was studied. Ti-rich NiTi films were deposited on 3? Si (100) substrates by DC magnetron sputtering at three deposition temperatures (300, 350 and 400 degrees C) with subsequent annealing in vacuum at their respective deposition temperatures for 4 h. The initial value of residual stress was found to be the highest for the film deposited and annealed at 400 degrees C and the lowest for the film deposited and annealed at 300 degrees C. All the three films were found to be amorphous in the as-deposited and annealed conditions. The nature of the stress response with temperature on heating in the first cycle (room temperature to 450 degrees C) was similar for all three films although the spike in tensile stress, which occurs at similar to 330 degrees C, was significantly higher in the film deposited and annealed at 300 degrees C. All the films were also found to undergo partial crystallisation on heating up to 450 degrees C and this resulted in decrease in the stress values around 5560 degrees C in the cooling cycle. The stress response with temperature in the second thermal cycle (room temperature to 450 degrees C and back), which is reflective of the intrinsic film behaviour, was found to be similar in all cases and the elastic modulus determined from the stress response was also more or less identical. The three deposition temperatures were also not found to have a significant effect on the transformation characteristics of these films such as transformation start and finish temperatures, recovery stress and hysteresis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical oxidation of sodium borohydride (NaBH(4)) and ammonia borane (NH(3)BH(3)) (AB) have been studied on titanium carbide electrode. The oxidation is followed by using cyclic voltammetry, chronoamperometry and polarization measurements. A fuel cell with TiC as anode and 40 wt% Pt/C as cathode is constructed and the polarization behaviour is studied with NaBH(4) as anodic fuel and hydrogen peroxide as catholyte. A maximum power density of 65 mW cm(-2) at a load current density of 83 mA cm(-2) is obtained at 343 K in the case of borhydride-based fuel cell and a value of 85 mW cm(-2) at 105 mA cm(-2) is obtained in the case of AB-based fuel cell at 353 K. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical solutions are obtained for skin friction, heat transfer to the wall and growth of boundary layer along the flat plate by employing two dimensional Navier-Stokes equations governing the hypersonic flow coupled with species continuity equations. Flow fields have been computed along the flat plate in CO2 atmosphere in the presence of transpiration cooling using air and carbon dioxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid solidification, mechanical alloying and devitrificaiton of precursor metallic glasses are all possible routes for the synthesis of nanocrystals and nanocomposites, though their efficacy is system dependent. In a comprehensive study of alloys across the Ti-Ni phase diagram, nanocrystals of Ti and Ni and nanocomposites of alpha -Ti and Ti sub 2 Ni, Ti sub 2 Ni and TiNi and beta -Ti and glass have been produced. By the addition of Al, devitrification of metallic glasses created by mechanical alloying led to nanocrystalline intermetallic compounds. The evolution of these nanocrystalline microstructures has been rationalized on the basis of thermodynamic and kinetic considerations involving the metastable phase diagram for this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation of ternary solubilities of solids is essential for the efficient design of extraction processes. The ternary solubilities of solids for cosolvent and cosolute systems are complex functions of temperature, pressure and cosolvent/cosolute composition. The intermolecular interactions between the molecules have a significant role in the solubilities of mixed solids in SCCO2 and cosolvent ternary systems. Two model equations were developed for ternary SCCO2 + cosolvent/cosolute systems by using association and activity coefficient models. Both the model equations consist of five adjustable parameters and correlate the ternary solubilities of solids in terms of temperature, pressure, density and cosolvent/cosolute composition. The model equation for cosolvent systems correlated 43 solid pollutants-cosolvent-SCCO2, while the model equation for cosolute systems correlated 19 solute-cosolute-SCCO2 systems available in literature. The average AARD of the model equations are 4.73% and 4.87% for cosolvent ternary systems and mixed solids in SCCO2, respectively. (C) 2011 Elsevier B.V. All rights reserved.