232 resultados para stiffened plates
Resumo:
An improved higher order transverse shear deformation theory is employed to arrive at modified constitutive relations which can be used in the flexural, buckling and vibration analysis of laminated plates and shells. The strain energy for such systems is then expressed in terms of the displacements and the rotations for ready reference and use. Numerical values of vibration frequencies are obtained using this formulation employing Ritz's method of analysis. The results are compared with those available in the literature to validate the analysis presented.
Resumo:
The flow of a micropolar fluid in an orthogonal rheometer is considered. It is shown that an infinite number of exact solutions characterizing asymmetric motions are possible. The expressions for pressure in the fluid, the components of the forces and couples acting on the plates are obtained. The effect of microrotation on the flow is brought out by considering numerical results for the case of coaxially rotating disks.
Resumo:
A new binary law of velocity distribution has been developed to describe the velocity profile for the entire flow region. The law is a combination of logarithmic law, valid in the wall (inner) region, and parabolic law, valid in the core (outer) region of the flow. The validity of the law has been established based on earlier data on flat plates, rough and smooth pipes and experimental data obtained from rigid-walled open channels with plane sand beds. A procedure of estimating bed shear stress from the proposed law of velocity distribution using the measured velocity profile has been evolved. Bed shear estimates made according to this procedure are in agreement with the values obtained from uniform flow analysis in the case of open channel flow over a sediment bed. The proposed method of estimating the bed shear stress from the observed velocity profiles is found to be particularly useful in cases where it is difficult to determine precisely the true bed level, such as in the case of flow over sediment beds.
Resumo:
In this study, sliding experiments were conducted using pure magnesium pins against steel plates using an inclined pin-on-plate sliding tester. The inclination angle of the plate was varied in the tests and for each inclination angle, the pins were slid both perpendicular and parallel to the unidirectional grinding marks direction under both dry and lubricated conditions. SEM was used to study morphology of the transfer layer formed on the plates. Surface roughness of plates was measured using an optical profilometer. Results showed that the friction, amplitude of stick-slip motion and transfer layer formation significantly depend on both inclination angle and grinding marks direction of the plates. These variations could be attributed to the changes in the level of plowing friction taking place at the asperity level during sliding.
Resumo:
The contact zone and pressure distribution between two elastic plates joined by an elastic bolt and nut are estimated using finite element analysis. Smooth interfacial conditions are assumed in all the regions of contact. Eight node axisymmetric ring elements are used to model the structure. The matrix solution is obtained through frontal technique and this solution technique is shown to be very efficient for the iterative scheme adopted to determine the extent of contact. A parametric study is conducted varying the elastic properties of bolt and plate materials, bolt head diameter and thickness of the plates. The method of approach presented in this paper provides a solution with a realistic idealization of tension flange joints.
Resumo:
Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restorin force. In the present case, the saturation tip amplitude level can be tip to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate length (L/D <= 3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondiinensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U approximate to 0.2 at L/D = 1 to fD/U approximate to 0.1 at L/D = 3. As the splitter plate length is further increased beyond L/D >= 4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate regime, the spectra of the oscillations become broadband, and are reminiscent of the change in character of the wake oscillations seen in the earlier fixed-rigid splitter plate case for L/D >= 5.0. In the present case of the hinged-splitter plate, the sudden transition seen as the splitter plate length (L/D) is increased from 3 to 4 may be attributed to the fact that the wake vortices are no longer able to synchronize with the plate motions for larger splitter plate lengths. Hence, as observed in other vortex-induced vibration problems, the oscillations becomeaperiodic and the amplitude reduces dramatically.
Resumo:
The importance of interlaminar stresses has prompted a fresh look at the theory of laminated plates. An important feature in modelling such laminates is the need to provide for continuity of some strains and stresses, while at the same time allowing for the discontinuities in the others. A new modelling possibility is examined in this paper. The procedure allows for discontinuities in the in-plane stresses and transverse strains and continuity in the in-plane strains and transverse stresses. This theory is in the form of a heirarchy of formulations each representing an iterative step. Application of the theory is illustrated by considering the example of an infinite laminated strip subjected to sinusoidal loading.
Resumo:
Various field test (namely vibration tests on blocks or plates, steady-state vibration or Rayleigh wave tests, wave propagation tests, and cyclic load tests) were conducted at a number of sites in India to determine the dynamic shear modulus, G. Data obtained at different sites are described. The values of G obtained from the different tests at a given site vary widely. The rational approach for selecting the value of G from field tests for use in the analysis and design of soil-structure interaction problems under dynamic loads must account for the factors affecting G. The suggested approach, which provides a possible answer, is suitable in cohesionless soils below the water table where it is rather difficult, if not impossible, to obtain undisturbed samples.
Resumo:
In the present investigation, experiments were conducted on a tribological couple-copper pin against steel plate-using an inclined pin-on-plate sliding tester to understand the role of surface texture and roughness parameters of the plate on the coefficient friction and transfer layer formation. Two surface characteristics of the steel plates-roughness and texture-were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture of the plate. The plowing component of friction was highest for the surface texture that promotes plane strain conditions while it was lowest for the texture that favors plane stress conditions at the interface. Dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing and hence the plane strain/stress type deformations taking place at the asperity level.
Resumo:
Free vibration analysis is carried out to study the vibration characteristics of composite laminates using the modified shear deformation, layered, composite plate theory and employing the Rayleigh-Ritz energy approach. The analysis is presented in a unified form so as to incorporate all different combinations of laminate boundary conditions and with full coverage with regard to the various design parameters of a laminated plate. A parametric study is made using a beam characteristic function as the admissible function for the numerical calculations. The numerical results presented here are for an example case of fully clamped boundary conditions and are compared with previously published results. The effect of parameters, such as the aspect ratio of plates, ply-angle, number of layers and also the thickness ratios of plies in laminates on the frequencies of the laminate, is systematically studied. It is found that for anti-symmetric angle-ply or cross-ply laminates unique numerical values of the thickness ratios exist which improve the vibration characteristics of such laminates. Numerical values of the non-dimensional frequencies and nodal patterns, using the thickness ratio distribution of the plies, are then obtained for clamped laminates, fabricated out of various commonly used composite materials, and are presented in the form of the design curves.
Resumo:
The ferroelectric polarization switching was studied in DSP single crystal and Azoxybenzene liquid film using the method described by Merz (1954). The DSP single crystal samples were in the form of plates 0.5 mm - 1.0 mm thick. The Azoxybenzene liquid film samples had a thickness from 0.025 mm - 0.125 mm. Switching in DSP was observed in the temperature range +7°C to -30°C, while in Azoxybenzene it was observed from 30°C to 70°C.
Resumo:
The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.
Resumo:
The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.
Resumo:
The effect of inclination on laminar film condensation over and under isothermal flat plates is investigated analytically. The complete set of Navier Stokes equations in two dimensions is considered. Analysed as a perturbation problem, the zero-order perturbation represents the boundary layer equations. First and second order perturbations are solved to bring about the leading edge effects. Corresponding velocity and temperature profiles are presented. The results show decrease in heat transfer with larger ∥inclinations∥ from the vertical. Comparison with experimental data of Gerstmann and Griffith indicates a closer agreement of the present results than the analytical results of the same authors.
Resumo:
In plotting the variation of frequencies with geometric parameters such as side ratio, skew angle, thickness taper, etc. in detailed studies of the vibration characteristics of plates, situations are encountered such as crossing of the frequency curves or the tendency of these curves to come close together and veer away from each other. These have been generally referred to as “frequency crossings” and “transitions” respectively. The latter may preferably be referred to as “quasi-degeneracies”. In the literature there appears to be some ambiguity in the analysis and interpretation of these features. In this paper, a clarification of some of these questions as regards rectangular and skew plates is presented by making use of concepts from physics dealing with molecular vibrations.