133 resultados para solitons in Bose-Einstein condensates
Resumo:
A unique strategy for scavenging free radicals in situ on exposure to gamma irradiation in polyethylene (PE) nanocomposites is presented. Blends of ultra-high molecular weight PE and linear low-density PE (PEB) and their nanocomposites with graphene (GPEB) were prepared by melt mixing to develop materials for biomedical implants. The effect of gamma irradiation on the microstructure and mechanical properties was systematically investigated. The neat blend and the nanocomposite were subjected to gamma-ray irradiation in order to improve the interfacial adhesion between PE and graphene sheets. Structural and thermal characterization revealed that irradiation induced crosslinking and increased the crystallinity of the polymer blend. The presence of graphene further enhanced the crystallinity via crosslinks between the polymer matrix and the filler on irradiation. Graphene was found to scavenge free radicals as confirmed by electron paramagnetic resonance spectroscopy. Irradiation of graphene-containing polymer composites resulted in the largest increase in modulus and hardness compared to either irradiation or addition of graphene to PEB alone. This study provides new insight into the role of graphene in polymer matrices during irradiation and suggests that irradiated graphene-polymer composites could emerge as promising materials for use as articulating surfaces in biomedical implants.
Resumo:
This work attempts to bring critical insights into the electromagnetic shielding efficiency in polymeric nanocomposites with respect to the particle size of magnetic nanoparticles added along with or without a conductive inclusion. To gain insight, various Ni-Fe (NixFe1-x; x = 10, 20, 40; Ni: nickel, Fe: iron) alloys were prepared by a vacuum arc melting process and different particle sizes were then achieved by a controlled grinding process for different time scales. Poly(vinylidene fluoride), PVDF based composites involving different particle sizes of the Ni-Fe alloy were prepared with or without multiwall carbon nanotubes (MWNTs) by a wet grinding approach. The Ni-Fe particles were thoroughly characterized with respect to their microstructure and magnetization; and the electromagnetic (EM) shielding efficiency (SE) of the resulting composites was obtained from the scattering parameters using a vector network analyzer in a broad range of frequencies. The saturation magnetization of Ni-Fe nanoparticles and the bulk electrical conductivity of PVDF/Ni-Fe composites scaled with increasing particle size of NiFe. Interestingly, the PVDF/Ni-Fe/MWNT composites showed a different trend where the bulk electrical conductivity and SE scaled with decreasing particle size of the Ni-Fe alloy. A total SE of similar to 35 dB was achieved with 50 wt% of Ni60Fe40 and 3 wt% MWNTs. More interestingly, the PVDF/Ni-Fe composites shielded the EM waves mostly by reflection whereas, the PVDF/Ni-Fe/MWNT shielded mostly by absorption. A minimum reflection loss of similar to 58 dB was achieved in the PVDF/Ni-Fe/MWNT composites in the X-band (8-12 GHz) for a particular size of Ni-Fe alloy nanoparticles. This study brings new insights into the EM shielding efficiency in PVDF/magnetic nanoparticle based composites in the presence and absence of conducting inclusion.
Resumo:
Nanoscale ordering in a polymer blend structure is indispensable to obtain materials with tailored properties. It was established here that controlling the arrangement of nanoparticles, with different characteristics, in co-continuous PC/PVDF (polycarbonate/poly(vinylidene fluoride)) blends can result in outstanding microwave absorption (ca. 90%). An excellent reflection loss (RL) of ca. -71 dB was obtained for a model blend structure wherein the conducting (multiwall carbon nanotubes, MWNTs) and the magnetic inclusions (Fe3O4) are localized in PVDF and the dielectric inclusion (barium titanate, BT) is in PC. The MWNTs were modified using polyaniline, which facilitates better charge transport in the blends. Furthermore, by introducing surface active groups on BT nanoparticles and changing the macroscopic processing conditions, the localization of BT nanoparticles can be tailored, otherwise BT nanoparticles would localize in the preferred phase (PVDF). In this study, we have shown that by ordered arrangement of nanoparticles, the incoming EM radiation can be attenuated. For instance, when PANI-MWNTs were localized in PVDF, the shielding was mainly through reflection. Now by localizing the conducting inclusion and the magnetic lossy materials in PVDF and the dielectric materials in PC, an outstanding shielding effectiveness of ca. -37 dB was achieved where shielding was mainly through absorption (ca. 90%). Thus, this study clearly demonstrates that lightweight microwave absorbers can be designed using polymer blends as a tool.
Resumo:
Engineering blend structure with tailor-made distribution of nanoparticles is the prime requisite to obtain materials with extraordinary properties. Herein, a unique strategy of distributing nanoparticles in different phases of a blend structure has resulted in >99% blocking of incoming electromagnetic (EM) radiation. This is accomplished by designing a ternary polymer blend structure using polycarbonate (PC), poly(vinylidene fluoride) (PVDF), and poly(methyl methacrylate) (PMMA) to simultaneously improve the structural, electrical, and electromagnetic interference shielding (EMI). The blend structure was made conducting by preferentially localizing the multi-wall nanotubes (MWNTs) in the PVDF phase. By taking advantage of pp stacking MWNTs was noncovalently modified with an imidazolium based ionic liquid (IL). Interestingly, the enhanced dispersion of IL-MWNTs in PVDF improved the electrical conductivity of the blends significantly. While one key requisite to attenuate EM radiation (i.e., electrical conductivity) was achieved using MWNTs, the magnetic properties of the blend structure was tuned by introducing barium ferrite (BaFe) nanoparticles, which can interact with the incoming EM radiation. By suitably modifying the surface of BaFe nanoparticles, we can tailor their localization under the macroscopic processing condition. The precise localization of BaFe nanoparticles in the PC phase, due to nucleophilic substitution reaction, and the MWNTs in the PVDF phase not only improved the conductivity but also facilitated in absorption of the incoming microwave radiation due to synergetic effect from MWNT and BaFe. The shielding effectiveness (SE) was measured in X and K-u band, and an enhanced SE of -37 dB was noted at 18 GHz frequency. PMMA, which acted as an interfacial modifier in PC/PVDF blends further, resulting in a significant enhancement in the mechanical properties besides retaining high SE. This study opens a new avenue in designing mechanically strong microwave absorbers with a suitable combination of materials.
Resumo:
We establish the importance of modified Einstein's gravity (MG) in white dwarfs (WDs) for the first time in the literature. We show that MG leads to significantly sub- and super-Chandrasekhar limiting mass WDs, depending on a single model parameter. However, conventional WDs on approaching Chandrasekhar's limit are expected to trigger Type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe. Nevertheless, observations of several peculiar, under-and over-luminous SNeIa argue for the limiting mass widely different from Chandrasekhar's limit. Explosions of MG induced sub-and super-Chandrasekhar limiting mass WDs explain under-and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes. Our discovery questions both the global validity of Einstein's gravity and the uniqueness of Chandrasekhar's limit.
Resumo:
The use of copolymer and polymer blends widened the possibility of creating materials with multilayered architectures. Hierarchical polymer systems with a wide array of micro and nanostructures are generated by thermally induced phase separation (TIPS) in partially miscible polymer blends. Various parameters like the interaction between the polymers, concentration, solvent/non-solvent ratio, and quenching temperature have to be optimized to obtain these micro/nanophase structures. Alternatively, the addition of nanoparticles is another strategy to design materials with desired hetero-phase structures. The dynamics of the polymer nanocomposite depends on the statistical ordering of polymers around the nanoparticle, which is dependent on the shape of the nanoparticle. The entropic loss due to deformation of polymer chains, like the repulsive interactions due to coiling and the attractive interactions in the case of swelling has been highlighted in this perspective article. The dissipative particle dynamics has been discussed and is correlated with the molecular dynamics simulation in the case of polymer blends. The Cahn Hillard Cook model on variedly shaped immobile fillers has shown difference in the propagation of the composition wave. The nanoparticle shape has a contributing effect on the polymer particle interaction, which can change the miscibility window in the case of these phase separating polymer blends. Quantitative information on the effect of spherical particles on the demixing temperature is well established and further modified to explain the percolation of rod shaped particles in the polymer blends. These models correlate well with the experimental observations in context to the dynamics induced by the nanoparticle in the demixing behavior of the polymer blend. The miscibility of the LCST polymer blend depends on the enthalpic factors like the specific interaction between the components, and the solubility product and the entropic losses occurring due to the formation of any favorable interactions. Hence, it is essential to assess the entropic and enthalpic interactions induced by the nanoparticles independently. The addition of nanoparticles creates heterogeneity in the polymer phase it is localized. This can be observed as an alteration in the relaxation behavior of the polymer. This changes the demixing behavior and the interaction parameter between the polymers. The compositional changes induced due to the incorporation of nanoparticles are also attributed as a reason for the altered demixing temperature. The particle shape anisotropy causes a direction dependent depletion, which changes the phase behavior of the blend. The polymer-grafted nanoparticles with varying grafting density show tremendous variation in the miscibility of the blend. The stretching of the polymer chains grafted on the nanoparticles causes an entropy penalty in the polymer blend. A comparative study on the different shaped particles is not available up to date for understanding these aspects. Hence, we have juxtaposed the various computational studies on nanoparticle dynamics, the shape effect of NPs on homopolymers and also the cases of various polymer blends without nanoparticles to sketch a complete picture on the effect of various particles on the miscibility of LCST blends.
Resumo:
In order to enhance the piezoelectric b-phase, PVDF was electrospun from DMF solution. The enhanced b-phase was discerned by comparing the electrospun fibers against the melt mixed samples. While both the processes resulted in phase transformation of a-to electroactive b-polymorph in PVDF, the fraction of b-phase was strongly dependent on the adopted process. Two different nanoscopic particles: carboxyl functionalized multiwall carbon nanotubes (CNTs) and silver (Ag) decorated CNTs were used to further enhance the piezoelectric coefficient in the electrospun fibers. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) supports the development of piezoelectric b-phase in PVDF. It was concluded that electrospinning was the best technique for inducing the b-polymorph in PVDF. This was attributed to the high voltage electrostatic field that generates extensional forces on the polymer chains that aligns the dipoles in one direction. The ferroelectric and piezoelectric measurement on electrospun fibers were studied using piezo-response force microscope (PFM). The Ag-CNTs filled PVDF electrospun fibers showed the highest piezoelectric coefficient (d(33) = 54 pm V-1) in contrast to PVDF/CNT fibers (35 pm V-1) and neat PVDF (30 pm V-1). This study demonstrates that the piezoelectric coefficient can be enhanced significantly by electrospinning PVDF containing Ag decorated nanoparticles.
Resumo:
Poly(vinylidene difluoride), a well-known candidate for artificial muscle patch applications is a semi-crystalline polymer with a host of attributes such as piezo- and pyroelectricity, polymorphism along with low dielectric constant and stiffness. The present work explores the unique interplay among the factors (conductivity, polymorphism and electrical stimulation) towards cell proliferation on poly(vinylidene difluoride) (PVDF)-based composites. In this regard, multi-walled carbon nanotubes (MWNTs) are introduced in the PVDF matrix (limited to 2%) through melt mixing to increase the conductivity of PVDF. The addition of MWNTs also led to an increase in the fraction of piezoelectric beta-phase, tensile strength and modulus. The melting and crystallization behaviour of PVDF-MWNT together with FT-IR confirms that the crystallization is found to be aided by the presence of MWNT. The conducting PVDF-MWNTs are used as substrates for the growth of C2C12 mouse myoblast cells and electrical stimulation with a range of field strengths (0-2 V cm(-1)) is intermittently delivered to the cells in culture. The cell viability results suggest that metabolically active cell numbers can statistically increase with electric stimulation up to 1 V cm(-1), only on the PVDF + 2% MWNT. Summarising, the current study highlights the importance of biophysical cues on cellular function at the cell-substrate interface. This study further opens up new avenues in designing conducting substrates, that can be utilized for enhancing cell viability and proliferation and also reconfirms the lack of toxicity of MWNTs, when added in a tailored manner.
Resumo:
To improve the spatial distribution of nano particles in a polymeric host and to enhance the interfacial interaction with the host, the use of chain-end grafted nanoparticle has gained popularity in the field of polymeric nanocomposites. Besides changing the material properties of the host, these grafted nanoparticles strongly alter the dynamics of the polymer chain at both local and cooperative length scales (relaxations) by manipulating the enthalpic and entropic interactions. It is difficult to map the distribution of these chain-end grafted nanoparticles in the blend by conventional techniques, and herein, we attempted to characterize it by unique technique(s) like peak force quantitative nanomechanical mapping (PFQNM) through AFM (atomic force microscopy) imaging and dielectric relaxation spectroscopy (DRS). Such techniques, besides shedding light on the spatial distribution of the nanoparticles, also give critical information on the changing elasticity at smaller length scales and hierarchical polymer chain dynamics in the vicinity of the nanoparticles. The effect of one-dimensional rodlike multiwall carbon nanotubes (MWNTs), with the characteristic dimension of the order of the radius of gyration of the polymeric chain, on the phase miscibility and chain dynamics in a classical LCST mixture of polystyrene/ poly(vinyl methyl ether) (PS/PVME) was examined in detail using the above techniques. In order to tune the localization of the nanotubes, different molecular weights of PS (13, 31, and 46 kDa), synthesized using RAFT (reversible addition fragmentation chain transfer) polymerization, was grafted onto MWNTs in situ. The thermodynamic miscibility in the blends was assessed by low-amplitude isochronal temperature sweeps, the spatial distribution of MWNTs in the blends was evaluated by PFQNM, and the hierarchical polymer chain dynamics was studied by DRS. It was observed that the miscibility, concentration fluctuation, and cooperative relaxations of the PS/PVME blends are strongly governed by the spatial distribution of MWNTs in the blends. These findings should help guide theories and simulations of hierarchical chain dynamics in LCST mixtures containing rodlike nanoparticles.
Resumo:
To improve the spatial distribution of nano particles in a polymeric host and to enhance the interfacial interaction with the host, the use of chain-end grafted nanoparticle has gained popularity in the field of polymeric nanocomposites. Besides changing the material properties of the host, these grafted nanoparticles strongly alter the dynamics of the polymer chain at both local and cooperative length scales (relaxations) by manipulating the enthalpic and entropic interactions. It is difficult to map the distribution of these chain-end grafted nanoparticles in the blend by conventional techniques, and herein, we attempted to characterize it by unique technique(s) like peak force quantitative nanomechanical mapping (PFQNM) through AFM (atomic force microscopy) imaging and dielectric relaxation spectroscopy (DRS). Such techniques, besides shedding light on the spatial distribution of the nanoparticles, also give critical information on the changing elasticity at smaller length scales and hierarchical polymer chain dynamics in the vicinity of the nanoparticles. The effect of one-dimensional rodlike multiwall carbon nanotubes (MWNTs), with the characteristic dimension of the order of the radius of gyration of the polymeric chain, on the phase miscibility and chain dynamics in a classical LCST mixture of polystyrene/ poly(vinyl methyl ether) (PS/PVME) was examined in detail using the above techniques. In order to tune the localization of the nanotubes, different molecular weights of PS (13, 31, and 46 kDa), synthesized using RAFT (reversible addition fragmentation chain transfer) polymerization, was grafted onto MWNTs in situ. The thermodynamic miscibility in the blends was assessed by low-amplitude isochronal temperature sweeps, the spatial distribution of MWNTs in the blends was evaluated by PFQNM, and the hierarchical polymer chain dynamics was studied by DRS. It was observed that the miscibility, concentration fluctuation, and cooperative relaxations of the PS/PVME blends are strongly governed by the spatial distribution of MWNTs in the blends. These findings should help guide theories and simulations of hierarchical chain dynamics in LCST mixtures containing rodlike nanoparticles.
Resumo:
A unique strategy was adopted to achieve an ultra-low electrical percolation threshold of multiwall carbon nanotubes (MWNTs) (0.25 wt%) in a classical partially miscible blend of poly-alpha-methylstyrene-co-acrylonitrile and poly(methyl methacrylate) (P alpha MSAN/PMMA), with a lower critical solution temperature. The polymer blend nanocomposite was prepared by standard melt-mixing followed by annealing above the phase separation temperature. In a two-step mixing protocol, MWNTs were initially melt-mixed with a random PS-r-PMMA copolymer and subsequently diluted with 85/15 P alpha MSAN/PMMA blends in the next mixing step. Mediated by the PS-r-PMMA, the MWNTs were mostly localized at the interface and bridged the PMMA droplets. This strategy led to enhanced electromagnetic interference (EMI) shielding effectiveness at 0.25 wt% MWNTs through multiple scattering from MWNT-covered droplets, as compared to the blends without the copolymer, which were transparent to electromagnetic radiation.
Resumo:
Electromagnetic interference shielding (EMI) materials were designed using PC (polycarbonate)/SAN poly(styrene-co-acrylonitrile)] blends containing few-layered graphene nanosheets decorated with nickel nanoparticles (G-Ni). The graphene nanosheets were decorated with nickel nanoparticles via the uniform nucleation of the metal salt precursor on graphene sheets as the substrate. In order to localize the nanoparticles in the PC phase of the PC/SAN blends, a two-step mixing protocol was adopted. In the first step, graphene sheets were mixed with PC in solution and casted into a film, followed by dilution of these PC master batch films with SAN in the subsequent melt extrusion step. The dynamic mechanical properties, ac electrical conductivity, EMI shielding effectiveness and thermal conductivity of the composites were evaluated. The G-Ni nanoparticles significantly improved the electrical and thermal conductivity in the blends. In addition, a total shielding effectiveness (SET) of -29.4 dB at 18 GHz was achieved with G-Ni nanoparticles. Moreover, the blends with G-Ni exhibited an impressive 276% higher thermal conductivity and 29.2% higher elastic modulus with respect to the neat blends.
Resumo:
Extreme isotopic variations among extraterrestrial materials provide great insights into the origin and evolution of the Solar System. In this tutorial review, we summarize how the measurement of isotope ratios can expand our knowledge of the processes that took place before and during the formation of our Solar System and its subsequent early evolution. The continuous improvement of mass spectrometers with high precision and increased spatial resolution, including secondary ion mass spectrometry (SIMS), thermal ionization mass spectrometry (TIMS) and multi collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS), along with the ever growing amounts of available extraterrestrial samples have significantly increased the temporal and spatial constraints on the sequence of events that took place since and before the formation of the first Solar System condensates (i.e., Ca-Al-rich inclusions). Grains sampling distinct stellar environments with a wide range of isotopic compositions were admixed to, but possibly not fully homogenized in, the Sun's parent molecular cloud or the nascent Solar System. Before, during and after accretion of the nebula, as well as the formation and subsequent evolution of planetesimals and planets, chemical and physical fractionation processes irrevocably changed the chemical and isotopic compositions of all Solar System bodies. Since the formation of the first Solar System minerals and rocks 4.568 Gyr ago, short-and long-lived radioactive decay and cosmic ray interaction also contributed to the modification of the isotopic framework of the Solar System, and permit to trace the formation and evolution of directly accessible and inferred planetary and stellar isotopic reservoirs.