213 resultados para resonator-coupling elements
Resumo:
This paper reports the design of a compact low pass filter (LPF) with wide stop band region using trisection stepped impedance resonators in microstrip medium. Experimental results of a low pass filter designed at 1 GHz have been compared against the analytical and EM simulation results for the validation of the design. Results are satisfactorily matching each other. The maximum insertion of the measured filter is 0.2 dB and minimum return loss is 13.5 dB over the pass band. The stop band rejection is better than 20 dB from 1.5 GHz to 4.2 GHz and hence wide stop band performance is achieved. Overall size of the filter is 30 mm x 20 mm x 0.78 mm which is 0.1 lambda x 0.066 lambda. x 0.0026 lambda at 1 GHz. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Mufflers with at least one acoustically absorptive duct are generally called dissipative mufflers. Generally, for want of systems approach, these mufflers are characterized by transmission loss of the lined duct with overriding corrections for the terminations, mean flow, etc. In this article, it is proposed that dissipative duct should be integrated with other muffler elements, source impedance and radiation impedance, by means of transfer matrix approach. Towards this end, the transfer matrix for rectangular duct with mean flow has been derived here, for the least attenuated mode. Mean flow introduces a coupling between transverse wave numbers and axial wave number, the evaluation of which therefore calls for simultaneous solution of two or three transcendental equations. This is done by means of a Newton-Raphson iteration scheme, which is illustrated here for square ducts lined with porous ceramic tiles.
Resumo:
We show that a fluid under strong spatially periodic confinement displays a glass transition within mode-coupling theory at a much lower density than the corresponding bulk system. We use fluctuating hydrodynamics, with confinement imposed through a periodic potential whose wavelength plays an important role in our treatment. To make the calculation tractable we implement a detailed calculation in one dimension. Although we do not expect simple 1d fluids to show a glass transition, our results are indicative of the behavior expected in higher dimensions. In a certain region of parameter space we observe a three-step relaxation reported recently in computer simulations [S. H. Krishnan, Ph.D. thesis, Indian Institute of Science (2005); Kim et al., Eur. Phys. J. Special Topics 189, 135 (2010)] and a glass-glass transition. We compare our results to those of Krakoviack [Phys. Rev. E 75, 031503 (2007)] and Lang et al. [Phys. Rev. Lett. 105, 125701 (2010)].
Resumo:
Lagrange's equation is utilized to show the analogy of a lossless microwave cavity resonator with the conventional LC network. A brief discussion on the resonant frequencies of a microwave cavity resonator and the two degenerate companion modes H01 and E11 appearing in a cavity is given. The first order perturbation theory of a small deformation of the wall of a cavity is discussed. The effects of perturbation, such as the change in the resonant frequency and the Q of a cavity, the change in the electromagnetic field configurations and hence mixing of modes are also discussed. An expression for the coupling coefficient between the two degenerate modes H01 and E11 is derived with the help of the field equations. Results indicate that in the absence of perturbation the above two degenerate modes can co-exist without losing their individual identities. Several applications of the perturbation theory, such as the measurement of the dielectric properties of matter, study of ferromagnetic resonance, etc., are described.
Resumo:
A solvent-free synthesis of alpha-aminonitriles and beta-nitroamines by oxidative cross-dehydrogenative coupling under aerobic condition is reported. A catalytic amount of molybdenum(VI) acetylacetonoate was found to catalyze cyanation of tertiary amines to form alpha-aminonitriles, whereas vanadium pentoxide was found to promote aza-Henry reaction to furnish beta-nitroamines. Both of these environmentally benign reactions are performed in the absence of solvents using molecular oxygen as an oxidant.
Resumo:
The Griffiths phase-like features and the spin-phonon coupling effects observed in Tb(2)NiMnO(6) are reported. The double perovskite compound crystallizes in monoclinic P2(1)/n space group and exhibits a magnetic phase transition at T(c) similar to 111 K as an abrupt change in magnetization. A negative deviation from ideal Curie-Weiss law exhibited by 1/chi(T) curves and less-than-unity susceptibility exponents from the power-law analysis of inverse susceptibility are reminiscent of Griffiths phase-like features. Arrott plots derived from magnetization isotherms support the inhomogeneous nature of magnetism in this material. The observed effects originate from antiferromagnetic interactions that arise from inherent disorder in the system. Raman scattering experiments display no magnetic-order-induced phonon renormalization below Tc in Tb(2)NiMnO(6), which is different from the results observed in other double perovskites and is correlated to the smaller size of the rare earth. The temperature evolution of full-width-at-half-maximum for the stretching mode at 645 cm(-1) presents an anomaly that coincides with the magnetic transition temperature and signals a close connection between magnetism and lattice in this material. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3671674]
Resumo:
We revisit the process e(+)e(-) -> gamma Z at the ILC with transverse beam polarization in the presence of anomalous CP- violating gamma ZZ coupling lambda(1) and gamma gamma Z coupling lambda(2). We point out that if the final- state spins are resolved, then it becomes possible to fingerprint the anomalous coupling Re lambda(1). 90% confidence level limit on Re lambda(1) achievable at ILC with center- of- mass energy of 500 GeVor 800 GeV with realistic initial beam polarization and integrated luminosity is of the order of few times of 10(-2) when the helicity of Z is used and 10(-3) when the helicity of gamma is used. The resulting corrections at quadratic order to the cross section and its influence on these limits are also evaluated and are shown to be small. The benefits of such polarization programmes at the ILC are compared and contrasted for the process at hand. We also discuss possible methods by which one can isolate events with a definite helicity for one of the final- state particles.
Resumo:
The present article demonstrates how the stiffness, hardness as well as the cellular response of bioinert high-density polyethylene (HDPE) can be significantly improved with combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different amounts of hydroxyapatite and alumina, limited to a total of 40 wt %, have been incorporated in HDPE matrix. An important step in composite fabrication was to select appropriate solvent and optimal addition of coupling agent (CA). In case of chemically coupled composites, 2% Titanium IV, 2-propanolato, tris iso-octadecanoato-O was used as a CA. All the hybrid composites, except monolithic HDPE, were fabricated under optimized compression molding condition (140 degrees C, 0.75 h, 10 MPa pressure). The compression molded composites were characterized, using X-ray diffraction, Fourier transformed infrared spectroscopy, and scanning electron microscopy. Importantly, in vitro cell culture and cell viability study (MTT) using L929 fibroblast and SaOS2 osteoblast-like cells confirmed good cytocompatibility properties of the developed hybrid composites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
A reliable method for service life estimation of the structural element is a prerequisite for service life design. A new methodology for durability-based service life estimation of reinforced concrete flexural elements with respect to chloride-induced corrosion of reinforcement is proposed. The methodology takes into consideration the fuzzy and random uncertainties associated with the variables involved in service life estimation by using a hybrid method combining the vertex method of fuzzy set theory with Monte Carlo simulation technique. It is also shown how to determine the bounds for characteristic value of failure probability from the resulting fuzzy set for failure probability with minimal computational effort. Using the methodology, the bounds for the characteristic value of failure probability for a reinforced concrete T-beam bridge girder has been determined. The service life of the structural element is determined by comparing the upper bound of characteristic value of failure probability with the target failure probability. The methodology will be useful for durability-based service life design and also for making decisions regarding in-service inspections.
Resumo:
The effectiveness of various trace element concentrations in medicinal plants in the cure of various diseases can be determined by their quantitative estimation. Elemental concentrations of aqueous extract of F. religiosa leaves were measured by Laser-induced breakdown spectroscopy (LIBS). LIBS is a very powerful and efficient analytical tool for determining elemental constitution. The present study deals with the LIBS-based validation of elements responsible for the glycemic potential of aqueous extract of F. religiosa leaves in streptozotocin-induced diabetic models. The significant decrease in blood glucose level and marked improvement in glucose tolerance test of diabetic models is correlated to the concentration of elements present in the extract as revealed by LIBS spectra. Elements such as Mg and Ca have been observed in the LIBS spectra of F. religiosa.
Resumo:
Analytical solution is presented to convert a given driving-point impedance function (in s-domain) into a physically realisable ladder network with inductive coupling between any two sections and losses considered. The number of sections in the ladder network can vary, but its topology is assumed fixed. A study of the coefficients of the numerator and denominator polynomials of the driving-point impedance function of the ladder network, for increasing number of sections, led to the identification of certain coefficients, which exhibit very special properties. Generalised expressions for these specific coefficients have also been derived. Exploiting their properties, it is demonstrated that the synthesis method essentially turns out to be an exercise of solving a set of linear, simultaneous, algebraic equations, whose solution directly yields the ladder network elements. The proposed solution is novel, simple and guarantees a unique network. Presently, the formulation can synthesise a unique ladder network up to six sections.
Resumo:
This paper presents a method for minimizing the sum of the square of voltage deviations by a least-square minimization technique, and thus improving the voltage profile in a given system by adjusting control variables, such as tap position of transformers, reactive power injection of VAR sources and generator excitations. The control variables and dependent variables are related by a matrix J whose elements are computed as the sensitivity matrix. Linear programming is used to calculate voltage increments that minimize transmission losses. The active and reactive power optimization sub-problems are solved separately taking advantage of the loose coupling between the two problems. The proposed algorithm is applied to IEEE 14-and 30-bus systems and numerical results are presented. The method is computationally fast and promises to be suitable for implementation in real-time dispatch centres.
Resumo:
Molybdenum trioxide (MoO3) catalyzed efficient oxidative cross-dehydrogenative-coupling (CDC) method for C-H functionalization of N-aryl tetrahydroisoquinolines has been explored. This user-friendly method of synthesizing alpha-aminophosphonates employs 1.1 equiv of dialkyl-H-phosphonate under aerobic condition. Formation of new C-P bonds from unfunctionalized starting materials under environmentally benign conditions provides an excellent avenue for the synthesis of biologically active alpha-aminophosphonates. (C) 2012 Elsevier Ltd. All rights reserved.
Changing resonator geometry to boost sound power decouples size and song frequency in a small insect
Resumo:
Despite their small size, some insects, such as crickets, can produce high amplitude mating songs by rubbing their wings together. By exploiting structural resonance for sound radiation, crickets broadcast species-specific songs at a sharply tuned frequency. Such songs enhance the range of signal transmission, contain information about the signaler's quality, and allow mate choice. The production of pure tones requires elaborate structural mechanisms that control and sustain resonance at the species-specific frequency. Tree crickets differ sharply from this scheme. Although they use a resonant system to produce sound, tree crickets can produce high amplitude songs at different frequencies, varying by as much as an octave. Based on an investigation of the driving mechanism and the resonant system, using laser Doppler vibrometry and finite element modeling, we show that it is the distinctive geometry of the crickets' forewings (the resonant system) that is responsible for their capacity to vary frequency. The long, enlarged wings enable the production of high amplitude songs; however, as a mechanical consequence of the high aspect ratio, the resonant structures have multiple resonant modes that are similar in frequency. The drive produced by the singing apparatus cannot, therefore, be locked to a single frequency, and different resonant modes can easily be engaged, allowing individual males to vary the carrier frequency of their songs. Such flexibility in sound production, decoupling body size and song frequency, has important implications for conventional views of mate choice, and offers inspiration for the design of miniature, multifrequency, resonant acoustic radiators.
Resumo:
Present work presents a code written in the very simple programming language MATLAB, for three dimensional linear elastostatics, using constant boundary elements. The code, in full or in part, is not a translation or a copy of any of the existing codes. Present paper explains how the code is written, and lists all the formulae used. Code is verified by using the code to solve a simple problem which has the well known approximate analytical solution. Of course, present work does not make any contribution to research on boundary elements, in terms of theory. But the work is justified by the fact that, to the best of author’s knowledge, as of now, one cannot find an open access MATLAB code for three dimensional linear elastostatics using constant boundary elements. Author hopes this paper to be of help to beginners who wish to understand how a simple but complete boundary element code works, so that they can build upon and modify the present open access code to solve complex engineering problems quickly and easily. The code is available online for open access (as supplementary file for the present paper), and may be downloaded from the website for the present journal.