363 resultados para reaction mechanism(Chemistry)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blue emission of polyfluorene (PF)-based light-emitting diodes (LEDs) is known to degrade due to a low-energy green emission, which hitherto has been attributed to oxidative defects. By studying the electroluminescence (EL) from ethyl-hexyl substituted PF LEDs in the presence of oxygen and in an inert atmosphere, and by using trace quantities of paramagnetic impurities (PM) in the polymer, we show that the triplet states play a major role in the low-energy emission mechanism. Our time-dependent many-body studies show a large cross-section for the triplet formation in the EL process in the presence of PM, primarily due to electron-hole recombination processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isonicotinic acid hydrazide (isoniazid), one of the most potent antitubercular drugs, was recently shown, in our laboratory, to form two different complexes with copper, depending upon the oxidation state of the metal ion. Both the complexes have been shown to possess antiviral activity against Rous sarcoma virus, an RNA tumor virus. The antiviral activity of the complexes has been attributed to their ability to inhibit the endogenous reverse transcriptase activity of RSV. More recent studies in our laboratory indicate that both these complexes inhibit both endogenous and exogenous reactions. As low a final concentration as 50 μM of the cupric and the cuprous complexes inhibits the endogenous reaction to the extent of 93 and 75 per cent respectively. Inhibition of the exogenous reaction varies with the templates. The inhibition can be reversed by either β-mercaptoethanol or ethylene-diamine-tetra-acetic acid. The specificity of this inhibition has been ascertained by using a synthetic primer-template, −(dG)not, vert, similar15−(rCm)n, which is highly specific for reverse transcriptases. The inhibition is found to be template specific. The studies carried out, using various synthetic primer-templates, show the inhibition of both the steps of reverse transcription by the copper complexes of isoniazid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model (NADH-phenazine methosulfate-O2) formally similar to pyridine nucleotide-dependent flavoprotein hydroxylases catalyzed the hydroxylation of several aromatic compounds. The hydroxylation was maximal at acid pH and was inhibited by ovine Superoxide dismutase, suggesting that perhydroxyl radicals might be intermediates in this process. The stoichiometry of the reaction indicated that a univalent reduction of oxygen was occurring. The correlation between the concentration of semiquinone and hydroxylation, and the inhibition of hydroxylation by ethanol which inhibited semiquinone oxidation, suggested the involvement of phenazine methosulfate-semiquinone. Activation of hydroxylation by Fe3+ and Cu2+ supported the contention that univalently reduced species of oxygen was involved in hydroxylation. Catalase was without effect on the hydroxylation by the model, ruling out H2O2 as an intermediate. A reaction sequence, involving a two-electron reduction of phenazine methosulfate to reduced phenazine methosulfate followed by disproportionation with phenazine methosulfate to generate the semiquinone, was proposed. The semiquinone could donate an electron to O2 to generate O2 which could be subsequently protonated to form the perhydroxyl radical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal decomposition of hydrazinium monoperchlorate (HP-1) in the molten state has been investigated using differential thermal analysis, thermogravimetric analysis, a constant volume manometric technique and mass-spectrometry. The stoichiometry of the reaction can be represented by the equation: 20 N2H5C1O4 13 NH4C1O4 + 3.5 Cl2 + 2 O2 + 13 N2 + 0.5 N2O + 0.5 H2 + + 23.5 H2O The data seem to indicate that the mechanism, which involves an associated complex, remains unchanged from 140 to 190°. Consequently, impurities capable of forming associated complexes with the hydrazinium or the perchlorate ion desensitize the thermal decomposition of HP-1, the extent of desensitization being determined by the size, the charge and the concentration of the impurity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of the interaction between the unsaturated monomer and the chelate, Fe(DPM)3, is studied in detail. The interaction is found to occur only in solution. The stoichiometry of interaction and the equilibrium constant are evaluated. With the help of spectral evidence, attempts are made to point out the specific sites of interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new neutral copper-azido polymers [Cu-3(N-3)(6)(tmen)(2)](n)(1)and [Cu-6(N-3)(12)(deen)(2)](n) (2) [tmen = N,N,N, N-tetramethylethylenediamine and deen = N,N-diethylethylenediamine] have been synthesized by using lower molar equivalents of the chelating diamine ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. The single crystal X-ray structure shows that in the basic unit of the 1D complex 1, the three Cu-II ions are linked by double end-on azido bridges with Cu-N-EO-Cu angles on both sides of the magnetic exchange critical angle of 108 degrees. Complex 2 is a 3D framework of a basic u-6 cluster. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in both the complexes. Density functional theory calculations (B3LYP functional) have been performed on the trinuclear unit to provide a qualitative theoretical interpretation of the overall ferromagnetic behavior shown by the complex 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutral and cationic organometallic ruthenium(II) piano stool complexes of the type [(eta(6)-cymene)R-uCl(X)(Y)] (complexes R1-R8) has been synthesized and characterized. In cationic complexes, X, Y is either a eta(2) phosphorus ligand such as 1,1-bis(diphenylphosphino)methane (DPPM) and 1,2-bis(diphenylphosphino)ethane (DPPE) or partially oxidized ligands such as 1,2-bis(diphenylphosphino)methane monooxide (DPPMO) and 1,2-bis(diphenylphosphino)ethane monooxide (DPPEO) which are strong hydrogen bond acceptors. In neutral complexes. X is chloride and Y is a monodentate phosphorous donor. Complexes with DPPM and DPPMO ligands ([(eta(6)-cymene)Ru(eta(2)-DPPM)Cl]PF6 (R2), [(eta(6)-cymene)Ru(eta(2)-DPPMO)Cl]PF6 (R3), [(eta(6)-cymene)Ru(eta(1)-DPPM)Cl-2] (R5) and [(eta(6)-cymene)Ru(eta(1)-DPPMO)Cl-2] (R6) show good cytotoxicity. Growth inhibition study of several human cancer cell lines by these complexes has been carried out. Mechanistic studies for R5 and R6 show that inhibition of cancer cell growth involves both cell cycle arrest and apoptosis induction. Using an apoptosis PCR array, we identified the sets of antiapoptotic genes that were down regulated and pro-apoptotic genes that were up regulated. These complexes were also found to be potent metastasis inhibitors as they prevented cell invasion through matrigel. The complexes were shown to bind DNA in a non intercalative fashion and cause unwinding of plasmid DNA in cell-free medium by competitive ethidium bromide binding, viscosity measurements, thermal denaturation and gel mobility shift assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aromatic aldehydes and aryl isocyanates do not react at room temperature. However, we have shown for the first time that in the presence of catalytic amounts of group(IV) n-butoxide, they undergo metathesis at room temperature to produce imines with the extrusion of carbon dioxide. The mechanism of action has been investigated by a study of stoichiometric reactions. The insertion of aryl isocyanates into the metal n-butoxide occurs very rapidly. Reaction of the insertion product with the aldehyde is responsible for the metathesis. Among the n-butoxides of group(IV) metals, Ti((OBu)-Bu-n)(4) (8aTi) was found to be more efficient than Zr((OBu)-Bu-n)(4) (8aZr) and Hf((OBu)-Bu-n)(4) (8aHf) in carrying out metathesis. The surprisingly large difference in the metathetic activity of these alkoxides has been probed computationally using model complexes Ti(OMe)(4) (8bTi), Zr(OMe)(4) (8bZr) and Hf(OMe)(4) (8bHf) at the B3LYP/LANL2DZ level of theory. These studies indicate that the insertion product formed by Zr and Hf are extremely stable compared to that formed by Ti. This makes subsequent reaction of Zr and Hf complexes unfavorable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that data from recent experiments carried out on the kinetics of DNA escape from alpha-hemolysin nanopores [M. Wiggin, C. Tropini, C. T. Cossa, N. N. Jetha, and A. Marziali, Biophys. J. 95, 5317 (2008)] may be rationalized by a model of chain dynamics based on the anomalous diffusion of a particle moving in a harmonic well in the presence of a delta function sink. The experiments of Wiggin found, among other things, that the occasional occurrence of unusually long escape times in the distribution of chain trapping events led to nonexponential decays in the survival probability, S(t), of the DNA molecules within the nanopore. Wiggin ascribed this nonexponentiality to the existence of a distribution of trapping potentials, which they suggested was theresult of stochastic interactions between the bases of the DNA and the amino acids located on the surface of the nanopore. Based on this idea, they showed that the experimentally determined S(t) could be well fit in both the short and long time regimes by a function of the form (1+t/tau)(-alpha) (the so called Becquerel function). In our model, S(t) is found to be given by a Mittag-Leffler function at short times and by a generalized Mittag-Leffler function at long times. By suitable choice of certain parameter values, these functions are found to fit the experimental S(t) even better than the Becquerel function. Anomalous diffusion of DNA within the trap prior to escape over a barrier of fixed height may therefore provide a second, plausible explanation of the data, and may offer fresh perspectives on similar trapping and escape problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic cyclopropanation reactions of olefins with ethyl diazoacetate were carried out using copper(I) diphosphinoamine (PPh2)(2)N(R) (R = Pr-i, H, Ph and -CH2-C6H4-CH=CH2) complexes at 40 degrees C in chloroform. High yields of the cyclopropanes were obtained in all cases. The rate of the reaction was influenced by the nuclearity of the complex and the binding mode of the ligand which was either bridging or chelating. Comparison of isostructural complexes shows that the rate follows the order R = Pr-i > H > Ph, where R is the substituent on the N. However, cyclopropane formation versus dimerization of the carbene, and trans to cis ratios of cyclopropane was similar in all cases. The nearly identical selectivity for different products formed was indicative of a common catalytic intermediate. A labile "copper-olefin" complex which does not involve the phosphine or the counterion is the most likely candidate. The differences in the reaction rates for different complexes are attributed to differences in the concentration of the catalytically active species which are in equilibrium with the catalytically inactive copper-phosphinoamine complex. To test the hypothesis a diphosphinoamine polymer complexed to copper(I) was used as a heterogeneous catalyst. Leaching of copper(I) and deactivation of the catalyst confirmed the proposed mechanism. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transthyretin (TTR), a tetrameric thyroxine (T4) carrier protein, is associated with a variety of amyloid diseases. In this study, we explore the potential of biphenyl ethers (BPE), which are shown to interact with a high affinity to its T4 binding site thereby preventing its aggregation and fibrillogenesis. They prevent fibrillogenesis by stabilizing the tetrameric ground state of transthyretin. Additionally, we identify two new structural templates (2-(5-mercapto-[1,3,4]oxadiazol-2-yl)-phenol and 2,3,6-trichloro-N-(4H-[1,2,4]triazol-3-yl) represented as compounds 11 and 12, respectively, throughout the manuscript) exhibiting the ability to arrest TTR amyloidosis. The dissociation constants for the binding of BPEs and compound 11 and 12 to TTR correlate with their efficacies of inhibiting amyloidosis. They also have the ability to inhibit the elongation of intermediate fibrils as well as show nearly complete (> 90%) disruption of the preformed fibrils. The present study thus establishes biphenyl ethers and compounds 11 and 12 as very potent inhibitors of TTR fibrillization and inducible cytotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acyl carrier protein (ACIP) plays a central role in many metabolic processes inside the cell, and almost 4% of the total enzymes inside the cell require it as a cofactor. Here, we report self-acylation properties in ACPs from Plasmodium falciparum and Brassica napus that are essential components of type II fatty acid biosynthesis (FAS II), disproving the existing notion that this phenomenon is restricted only to ACPs involved in polyketide biosynthesis. We also provide strong evidence to suggest that catalytic self-acylation is intrinsic to the individual ACP. Mutational analysis of these ACPs revealed the key residue(s) involved in this phenomenon. We also demonstrate that these FAS 11 ACPs exhibit a high degree of selectivity for self-acylation employing only dicarboxylic acids as substrates. A plausible mechanism for the self-acylation reaction is also proposed.