217 resultados para plate equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A straightforward analysis involving the complex function-theoretic method is employed to determine the closed-form solution of a special hypersingular integral equation of the second kind, and its known solution is recovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonsimilar boundary layer analysis is presented for the problem of free convection in power-law type non-Newtonian fluids along a permeable vertical plate with variable wall temperature or heat flux distribution. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymptotic analysis of the two-dimensional turbulent near-wake flow behind a Rat plate with sharp trailing edge has been formulated, The feature that the near-wake, which is dominated by the mixing of the oncoming turbulent boundary layers retains, to a large extent, the memory of the turbulent structure of the upstream boundary layer has been exploited to develop the analysis. This analysis leads to two regions of the near-wake flow (the inner near-wake and the outer near-wake) for which the governing equations are derived. The matching conditions among these regions lead to a logarithmic variation in the normal direction in the overlapping region surrounding the inner near-wake. These features are validated by the available experimental data. Similarity solutions for the velocity distribution (which satisfy the required matching conditions) in the inner near-wake and outer near-wake regions have been obtained by making the appropriate eddy-viscosity assumptions, Uniformly valid solutions for velocity distribution have been constructed for the near-wake. The solutions show good agreement with available experimental data. (C) Elsevier, Paris.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady laminar boundary layer flow of an electrically conducting fluid past a semi-infinite flat plate with an aligned magnetic field has been studied when at time t > 0 the plate is impulsively moved with a constant velocity which is in the same or opposite direction to that of free stream velocity. The effect of the induced magnetic field has been included in the analysis. The non-linear partial differential equations have been solved numerically using an implicit finite-difference method. The effect of the impulsive motion of the surface is found to be more pronounced on the skin friction but its effect on the x-component of the induced magnetic field and heat transfer is small. Velocity defect occurs near the surface when the plate is impulsively moved in the same direction as that of the free stream velocity. The surface shear stress, x-component of the induced magnetic field on the surface and the surface heat transfer decrease with an increasing magnetic field, but they increase with the reciprocal of the magnetic Prandtl number. However, the effect of the reciprocal of the magnetic Prandtl number is more pronounced on the x-component of the induced magnetic field. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical method is developed for solving an inverse problem for Helmholtz's equation associated with two semi-infinite incompressible fluids of different variable refractive indices, separated by a plane interface. The unknowns of the inverse problem are: (i) the refractive indices of the two fluids, (ii) the ratio of the densities of the two fluids, and (iii) the strength of an acoustic source assumed to be situated at the interface of the two fluids. These are determined from the pressure on the interface produced by the acoustic source. The effect of the surface tension force at the interface is taken into account in this paper. The application of the proposed analytical method to solve the inverse problem is also illustrated with several examples. In particular, exact solutions of two direct problems are first derived using standard classical methods which are then used in our proposed inverse method to recover the unknowns of the corresponding inverse problems. The results are found to be in excellent agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-similar boundary layer flow of a viscous incompressible electrically conducting fluid over a moving surface in a rotating fluid, in the presence of a magnetic field, Hall currents and the free stream velocity has been studied. The parabolic partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. The Coriolis force induces overshoot in the velocity profile of the primary flow and the magnetic field reduces/removes the velocity overshoot. The local skin friction coefficient for the primary flow increases with the magnetic field, but the skin friction coefficient for the secondary flow reduces it. Also the local skin friction coefficients for the primary and secondary flows are reduced due to the Hall currents. The effects of the magnetic field, Hall currents and the wall velocity, on the skin friction coefficients for the primary and secondary flows increase with the Coriolis force. The wall velocity strongly affects the flow field. When the wall velocity is equal to the free stream velocity, the skin friction coefficients for the primary and secondary flows vanish, but this does not imply separation. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple thermodynamic analysis of the well-known Michaelis-Menten equation (MME) of enzyme catalysis is proposed that employs the chemical potential mu to follow the Gibbs free energy changes attending the formation of the enzyme-substrate complex and its turnover to the product. The main conclusion from the above analysis is that low values of the Michaelis constant KM and high values of the turnover number k(cat) are advantageous: this supports a simple algebraic analysis of the MME, although at variance with current thinking. Available data apparently support the above findings. It is argued that transition state stabilisation - rather than substrate distortion or proximity - is the key to enzyme catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the Roy equations for the lowest partial waves of elastic ππ scattering. In the first part of the paper, we review the mathematical properties of these equations as well as their phenomenological applications. In particular, the experimental situation concerning the contributions from intermediate energies and the evaluation of the driving terms are discussed in detail. We then demonstrate that the two S-wave scattering lengths a00 and a02 are the essential parameters in the low energy region: Once these are known, the available experimental information determines the behaviour near threshold to within remarkably small uncertainties. An explicit numerical representation for the energy dependence of the S- and P-waves is given and it is shown that the threshold parameters of the D- and F-waves are also fixed very sharply in terms of a00 and a20. In agreement with earlier work, which is reviewed in some detail, we find that the Roy equations admit physically acceptable solutions only within a band of the (a00,a02) plane. We show that the data on the reactions e+e−→ππ and τ→ππν reduce the width of this band quite significantly. Furthermore, we discuss the relevance of the decay K→ππeν in restricting the allowed range of a00, preparing the grounds for an analysis of the forthcoming precision data on this decay and on pionic atoms. We expect these to reduce the uncertainties in the two basic low energy parameters very substantially, so that a meaningful test of the chiral perturbation theory predictions will become possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of I boundary value problems involving propagation of two-dimensional surface water waves, associated with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

‘Best’ solutions for the shock-structure problem are obtained by solving the Boltzmann equation for a rigid sphere gas by applying minimum error criteria on the Mott-Smith ansatz. The use of two such criteria minimizing respectively the local and total errors, as well as independent computations of the remaining error, establish the high accuracy of the solutions, although it is shown that the Mott-Smith distribution is not an exact solution of the Boltzmann equation even at infinite Mach number. The minimum local error method is found to be particularly simple and efficient. Adopting the present solutions as the standard of comparison, it is found that the widely used v2x-moment solutions can be as much as a third in error, but that results based on Rosen's method provide good approximations. Finally, it is shown that if the Maxwell mean free path on the hot side of the shock is chosen as the scaling length, the value of the density-slope shock thickness is relatively insensitive to the intermolecular potential. A comparison is made on this basis of present results with experiment, and very satisfactory quantitative agreement is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study has been made of transition to turbulence in the free convective flows on a heated plate. Observations have been made with the plate vertical and inclined at angles up to about 50° to the vertical, both above and below the plate. A fibre anemometer was used to survey the region of intermittent turbulence. Information has thus been obtained about the range of Grashof numbers over which transition takes place. Even when the plate is vertical the region of intermittent turbulence is long. When it is inclined, this region becomes still longer in the flow below the plate as a result of the stabilizing stratification, a Richardson number effect. It is possible to have a whole flow such that it should be described as transitional, not laminar or turbulent. It was noticed that in this flow and the vertical plate one, the velocity during the laminar periods could be either of two characteristic values, one of them close to zero. The behaviour above an inclined plate could be interpreted largely as a trend towards the behaviour described in a preceding paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation has been made of the structure of the motion above a heated plate inclined at a small angle (about 10°) to the horizontal. The turbulence is considered in terms of the similarities to and differences from the motion above an exactly horizontal surface. One effect of inclination is, of course, that there is also a mean motion. Accurate data on the mean temperature field and the intensity of the temperature fluctuations have been obtained with platinum resistance thermometers, the signals being processed electronically. More approximate information on the velocity field has been obtained with quartz fibre anemometers. These results have been supplemented qualitatively by simultaneous observations of the temperature and velocity fluctuations and also by smoke experiments. The principal features of the flow inferred from these observations are as follows. The heat transfer and the mean temperature field are not much altered by the inclination, though small, not very systematic, variations may result from the complexities of the velocity field. This supports the view that the mean temperature field is largely governed by the large-scale motions. The temperature fluctuations show a systematic variation with distance from the lower edge and resemble those above a horizontal plate when this distance is large. The largescale motions of the turbulence start close to the lower edge, but the smaller eddies do not attain full intensity until the air has moved some distance up the plate. The mean velocity receives a sizable contribution from a ‘through-flow’ between the side-walls. Superimposed on this are developments that show that the momentum transfer processes are complex and certainly not capable of representation by any simple theory such as an eddy viscosity. On the lower part of the plate there is surprisingly large acceleration, but further up the mixing action of the small eddies has a decelerating effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to present exergy charts for carbon dioxide (CO2) based on the new fundamental equation of state and the results of a thermodynamic analysis of conventional and trans-critical vapour compression refrigeration cycles using the data thereof. The calculation scheme is anchored on the Mathematica platform. There exist upper and lower bounds for the high cycle pressure for a given set of evaporating and pre-throttling temperatures. The maximum possible exergetic efficiency for each case was determined. Empirical correlations for exergetic efficiency and COP, valid in the range of temperatures studied here, are obtained. The exergy losses have been quantified. (C) 2003 Elsevier Ltd. All rights reserved.