121 resultados para mean-field theory
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (23)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (16)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (35)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (46)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (14)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (11)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (61)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (112)
- Cochin University of Science & Technology (CUSAT), India (8)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Diposit Digital de la UB - Universidade de Barcelona (22)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (8)
- Helda - Digital Repository of University of Helsinki (23)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (121)
- Institutional Repository of Leibniz University Hannover (2)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (21)
- Queensland University of Technology - ePrints Archive (22)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (289)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (1)
- Universidade Complutense de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (7)
- University of Michigan (2)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
There has been much interest in understanding collective dynamics in networks of brain regions due to their role in behavior and cognitive function. Here we show that a simple, homogeneous system of densely connected oscillators, representing the aggregate activity of local brain regions, can exhibit a rich variety of dynamical patterns emerging via spontaneous breaking of permutation or translational symmetries. Upon removing just a few connections, we observe a striking departure from the mean-field limit in terms of the collective dynamics, which implies that the sparsity of these networks may have very important consequences. Our results suggest that the origins of some of the complicated activity patterns seen in the brain may be understood even with simple connection topologies.