213 resultados para mathematical functions
Resumo:
Violin strings are relatively short and stiff and are well modeled by Timoshenko beam theory. We use the static part of the homogeneous differential equation of violin strings to obtain new shape functions for the finite element analysis of rotating Timoshenko beams. For deriving the shape functions, the rotating beam is considered as a sequence of violin strings. The violin string shape functions depend on rotation speed and element position along the beam length and account for centrifugal stiffening effects as well as rotary inertia and shear deformation on dynamic characteristics of rotating Timoshenko beams. Numerical results show that the violin string basis functions perform much better than the conventional polynomials at high rotation speeds and are thus useful for turbo machine applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A pseudo 2-D mathematical model has been developed to simulate a cupola with one row and two rows of tuyere. The simulation results predicted higher spout temperature and combustion ratio for cupola with two rows of tuyere compared to that with one row. Further, the model has been used to study the effect of the distance of separation between the two rows of tuyere on cupola performance. The computed results shows that the spout temperature increases with tuyere level separation and attains the maximum at an optimum distance of separation between two rows of tuyere. Above the optimum, the spout temperature starts decreasing. The exit gas temperature and combustion ratio increases monotonously with the increase in tuyere level separation. These results agree well with the reported experimental observations. The mechanism behind the improved cupola performance with two rows of tuyere has been deduced from the computed temperature and composition profiles inside the cupola.
Resumo:
A three-dimensional mathematical model has been developed to simulate the gas flow, composition, and temperature profiles inside a cupola. Comparison of the model with the reported experimental data shows the presence of a zone with low combustion rate at the tuyere level. For a 24 in (610 mm) cupola with four rows of tuyeres, the combustion zones from each tuyere overlap each other, forming an overall combustion zone of cylindrical shape of height similar to 0.2 m. Using the model, it is found that the spout temperature initially increases with increasing blast velocity and attains a maximum. Further increase in blast velocity does not change the spout temperature. This suggests that smaller size tuyeres and higher permeability of the bed can give superior cupola performance. (C) 1997 The Institute of Materials.
Resumo:
The present investigation analyses the thermodynamic behaviour of the surfaces and adsorption as a function of temperature and composition in the Fe-S-O melts based on the Butler's equations. The calculated-values of the surface tensions exhibit an elevation or depression depending on the type of the added solute at a concentration which coincides with that already present in the system. Generally, the desorption of the solutes as a function of temperature results in an initial increase followed by a decrease in the values of the surface tension. The observations are analyzed based on the surface interaction parameters which are derived in the present research.
Resumo:
This letter presents a new class of variational wavefunctions for Fermi systems in any dimension. These wavefunctions introduce correlations between Cooper pairs in different momentum states and the relevant correlations can be computed analytically. At half filling we have a ground state with critical superconducting correlations, that causes negligible increase of the kinetic energy. We find large enhancements in a Cooper-pair correlation function caused purely by the interplay between the uncertainty principle, repulsion and the proximity of half filling. This is surprising since there is no accompanying signature in usual charge and spin response functions, and typifies a novel kind of many-body cooperative behaviour.
Resumo:
In this paper we consider the problem of learning an n × n kernel matrix from m(1) similarity matrices under general convex loss. Past research have extensively studied the m = 1 case and have derived several algorithms which require sophisticated techniques like ACCP, SOCP, etc. The existing algorithms do not apply if one uses arbitrary losses and often can not handle m > 1 case. We present several provably convergent iterative algorithms, where each iteration requires either an SVM or a Multiple Kernel Learning (MKL) solver for m > 1 case. One of the major contributions of the paper is to extend the well knownMirror Descent(MD) framework to handle Cartesian product of psd matrices. This novel extension leads to an algorithm, called EMKL, which solves the problem in O(m2 log n 2) iterations; in each iteration one solves an MKL involving m kernels and m eigen-decomposition of n × n matrices. By suitably defining a restriction on the objective function, a faster version of EMKL is proposed, called REKL,which avoids the eigen-decomposition. An alternative to both EMKL and REKL is also suggested which requires only an SVMsolver. Experimental results on real world protein data set involving several similarity matrices illustrate the efficacy of the proposed algorithms.
Resumo:
We study the exact one-electron propagator and spectral function of a solvable model of interacting electrons due to Schulz and Shastry. The solution previously found for the energies and wave functions is extended to give spectral functions that turn out to be computable, interesting, and nontrivial. They provide one of the few examples of cases where the spectral functions are known asymptotically as well as exactly.
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
We consider the two-parameter Sturm–Liouville system $$ -y_1''+q_1y_1=(\lambda r_{11}+\mu r_{12})y_1\quad\text{on }[0,1], $$ with the boundary conditions $$ \frac{y_1'(0)}{y_1(0)}=\cot\alpha_1\quad\text{and}\quad\frac{y_1'(1)}{y_1(1)}=\frac{a_1\lambda+b_1}{c_1\lambda+d_1}, $$ and $$ -y_2''+q_2y_2=(\lambda r_{21}+\mu r_{22})y_2\quad\text{on }[0,1], $$ with the boundary conditions $$ \frac{y_2'(0)}{y_2(0)} =\cot\alpha_2\quad\text{and}\quad\frac{y_2'(1)}{y_2(1)}=\frac{a_2\mu+b_2}{c_2\mu+d_2}, $$ subject to the uniform-left-definite and uniform-ellipticity conditions; where $q_{i}$ and $r_{ij}$ are continuous real valued functions on $[0,1]$, the angle $\alpha_{i}$ is in $[0,\pi)$ and $a_{i}$, $b_{i}$, $c_{i}$, $d_{i}$ are real numbers with $\delta_{i}=a_{i}d_{i}-b_{i}c_{i}>0$ and $c_{i}\neq0$ for $i,j=1,2$. Results are given on asymptotics, oscillation of eigenfunctions and location of eigenvalues.
Resumo:
A dynamic model of the COREX melter gasifier is developed to study the transient behavior of the furnace. The effect of pulse disturbance and step disturbance on the process performance has been studied. This study shows that the effect of pulse disturbance decays asymptotically. The step change brings the system to a new steady state after a delay of about 5 hours. The dynamic behavior of the melter gasifier with respect to a shutdown/blow-on condition and the effect of tapping are also studied. The results show that the time response of the melter gasifier is much less than that of a blast furnace.
Resumo:
The COREX melter gasifier is a countercurrent reactor to produce liquid iron. Directly reduced iron (DRI), noncoking coal, and other additives are charged to the melter gasifier at their respective temperatures, and O-2 is blown through the tuyeres. Functionally, a melter gasifier is divided into three zones: a moving bed, fluidized bed, and free board. A model has been developed for the moving bed, where the tuyere region is two-dimensional (2-D) and the rest is one-dimensional (1-D). It is based on multiphase conservation of mass, momentum, and heat. The fluidized bed has been treated as 1-D. Partial equilibrium is calculated for the free board. The calculated temperature of the hot metal, the top gas, and the chemistry of the top gas agree with the reported plant data. The model has been used to study the effects of bed height, injection of impure O-2, coal chemistry, and reactivity on the process performance.
Resumo:
We study a system of ordinary differential equations linked by parameters and subject to boundary conditions depending on parameters. We assume certain definiteness conditions on the coefficient functions and on the boundary conditions that yield, in the corresponding abstract setting, a right-definite case. We give results on location of the eigenvalues and oscillation of the eigenfunctions.