317 resultados para functional thin films
Resumo:
As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe(+) ion beam to an ion fluence of about 10(16) ions-cm(-2). Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti(5)Si(3) intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.
Resumo:
Nanoparticles thin films have wide range of applications such as nanoelectronics, magnetic storage devices, SERS substrate fabrication, optical grating and antireflective coating. Present work describes a method to prepare large area nanoparticles thin film of the order of few square centimeters. Thin film deposition has been done successfully on a wide range of conducting as well as non conducting substrates such as carbon-coated copper grid, silicon, m-plane of alumina, glass and (100) plane of NaCl single crystal. SEM, TEM and AFM studies have been done for microstructural characterization of the thin films. A basic mechanism has been proposed towards the understanding of the deposition process.
Resumo:
Recently, there has been growing interest in Ca modified BaTiO3 structures due to their larger electro-optic coefficients for their use in optical storage of information over conventional BaTiO3 crystals. Barium Calcium Titanate (BCT) shows promising applications in advanced laser systems, optical interconnects and optical storage devices. BaTiO3 thin films of varied Ca (3 at. % - 15 at. %) doping were deposited using pulsed laser ablation (KrF excimer laser) technique over Pt/Si substrates. The stoichiometric and the compositional analysis were carried out using EDAX and SIMS. The dielectric studies were done at the frequency regime of 40 Hz to 100 kHz at different ambient temperatures from 200 K to 600 K. The BCT thin films exhibited diffuse phase transition, which was of a typical non lead relaxor behavior and had high dielectric constant and low dielectric loss. The phase transition for the different compositions of BCT thin films was near the room temperature, showing a marked departure from the bulk phase transition. The C - V and the hysteresis behavior confirmed the ferroelectric nature below the phase transition and paraelectric at the room temperature.
Resumo:
We have investigated the local electronic properties and the spatially resolved magnetoresistance of a nanostructured film of a colossal magnetoresistive (CMR) material by local conductance mapping (LCMAP) using a variable temperature Scanning Tunneling Microscope (STM) operating in a magnetic field. The nanostructured thin films (thickness ≈500nm) of the CMR material La0.67Sr0.33MnO3 (LSMO) on quartz substrates were prepared using chemical solution deposition (CSD) process. The CSD grown films were imaged by both STM and atomic force microscopy (AFM). Due to the presence of a large number of grain boundaries (GB's), these films show low field magnetoresistance (LFMR) which increases at lower temperatures. The measurement of spatially resolved electronic properties reveal the extent of variation of the density of states (DOS) at and close to the Fermi level (EF) across the grain boundaries and its role in the electrical resistance of the GB. Measurement of the local conductance maps (LCMAP) as a function of magnetic field as well as temperature reveals that the LFMR occurs at the GB. While it was known that LFMR in CMR films originates from the GB, this is the first investigation that maps the local electronic properties at a GB in a magnetic field and traces the origin of LFMR at the GB.
Effect of Nature of the Precursor on Crystallinity and Microstructure of MOCVD-Grown ZrO2 Thin Films
Resumo:
In the present work, we report the deposition of zirconia thin films on Si(100) at various substrate temperatures by low-pressure metalorganic chemical vapor deposition (MOCVD). Three different zirconium complexes, viz., tetrakis(2,4-pentadionato)zirconium(IV), [Zr(pd)4], tetrakis(2,2,6,6-tetramethyl-3,5-heptadionato)zirconium(IV), [Zr(thd)4], and tetrakis(t-butyl-3-oxo-butanoato)zirconium(IV), [Zr(tbob)4] are used as precursors. The relationship between the molecular structures of the precursors and their thermal properties, as examined by TG/DTA is presented. The films deposited using these precursors have distinctly different morphology, though all of them are of the cubic phase. The films grown from Zr(thd)4 are well crystallized, showing faceted growth at 575°C, whereas the films grown from Zr(pd)4 and Zr(tbob)4 are not well crystallized, and display cracks. These differences in the observed microstructure may be attributed to the different chemical decomposition pathways of the precursors during the film growth, which influence the nucleation and the growth processes. This is also evidenced by the different kinetics of growth from these three precursors under otherwise identical CVD conditions. The details of thin film deposition, and film microstructure analysis by XRD and SEM is presented. The dielectric behavior of the films deposited from different precursors, as studied by C-V measurements, are compared.
Resumo:
Epitaxial LaNiO3 thin films have been grown on SrTiO3 and several other substrates by pulsed laser deposition. The films are observed to be metallic down to 15 K, and the temperature dependence of resistivity is similar to that of bulk LaNiO3. Epitaxial, c-axis oriented YBa2Cu3O7-x films with good superconducting properties have been grown on the LaNiO3 (100) films. I-V characteristics of the YBa2Cu3O7-x-LaNiO3 junction are linear, indicating ohmic contact between them.
Resumo:
Novel, volatile, stable, oxo-β-ketoesterate complexes of titanium, whose synthesis requires only an inert atmosphere, as opposed to a glove box, have been developed. Using one of the complexes as the precursor, thin films of TiO2 have been deposited on glass substrates by metalorganic chemical vapor deposition (MOCVD) at temperatures ranging from 400°C to 525°C and characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. All the films grown in this temperature range are very smooth; those grown above 480°C consist of nearly monodisperse, nanocrystals of the anatase phase. Optical studies show the bandgaps in the range 3.4–3.7 eV for films grown at different temperatures. Thin films of anatase TiO2 have also been grown by spin-coating technique using another ketoesterate complex of titanium, demonstrating that the newly developed complexes can be successfully used for thin film growth by various chemical routes.
Resumo:
BaTiO3 and Ba0.9Ca0.1TiO3 thin films were deposited on the p – type Si substrate by pulsed excimer laser ablation technique. The Capacitance – Voltage (C-V) measurement measured at 1 MHz exhibited a clockwise rotating hysteresis loop with a wide memory window for the Metal – Ferroelectric – Semiconductor (MFS) capacitor confirming the ferroelectric nature. The low frequency C – V measurements exhibited the response of the minority carriers in the inversion region while at 1 MHz the C – V is of a high frequency type with minimum capacitance in the inversion region. The interface states of both the MFS structures were calculated from the Castagne – Vaipaille method (High – low frequency C – V curve). Deep Level Transient Spectroscopy (DLTS) was used to analyze the interface traps and capture cross section present in the MFS capacitor. There were distinct peaks present in the DLTS spectrum and these peaks were attributed to the presence of the discrete interface states present at the semiconductor – ferroelectric interface. The distribution of calculated interface states were mapped with the silicon energy band gap for both the undoped and Ca doped BaTiO3 thin films using both the C – V and DLTS method. The interface states of the Ca doped BaTiO3 thin films were found to be higher than the pure BaTiO3 thin films.
Resumo:
We have investigated the effect of biaxial strain on local electrical/electronic properties in thin films of La0.7Ca0.3MnO3 with varying degrees of biaxial strain in them. The local electrical properties were investigated as a function of temperature by scanning tunneling spectroscopy (STS) and scanning tunneling potentiometry (STP), along with the bulk probe like conductance fluctuations.The results indicate a positive correlation between the lattice mismatch biaxial strain and the local electrical/electronic inhomogenities observed in the strained sample. This is plausible since the crystal structure of the manganites interfere rather strongly with the magnetic/electronic degrees of freedom. Thus even a small imbalance (biaxial strain) can induce significant changes in the electrical properties of the system.
Resumo:
Recently there is an increasing demand and extensive research on high density memories, in particular to the ferroelectric random access memory composed of 1T/1C (1 transistor/1 capacitor) or 2T/2C. FRAM's exhibit fast random acess in read/write mode, non - volatility and low power for good performance. An integration of the ferroelectric on Si is the key importance and in this regard, there had been various models proposed like MFS, MFIS, MFMIS structure etc., Choosing the proper insulator is very essential for the better performance of the device and to exhibit excellent electrical characteristics. ZrTiO4 is a potential candidate because of its excellent thermal stability and lattice match on the Si substrate. SrBi2Ta2O9 and ZrTiO4 thin films were prepared on p - type Si substrate by pulsed excimer laser ablation technique. Optimization of both ZT and SBT thin films in MFS and MFIS structure had been done based on the annealing, oxygen partial pressures and substrate temperatures to have proper texture of the thin films. The dc leakage current, P - E hysteresis, capacitance - voltage and conductance - voltage measurement were carried out. The effect of the frequency dependence on MFIS structure was observed in the C – V curve. It displays a transition of C - V curve from high frequency to low frequency curve on subjection to varied frequencies. Density of interface states has been calculated using Terman and high - low frequency C - V curve. The effect of memory window in the C - V hysteresis were analysed in terms of film thickness and annealing temperatures. DC conduction mechanism were analysed in terms of poole - frenkel, Schottky and space charge limited conduction separately on MFS, MIS structure.
Resumo:
Recently there is an increasing demand and extensive research on high density memories, in particular to the ferroelectric random access memory composed of 1T/1C (1 transistor/1 capacitor) or 2T/2C. FRAM's exhibit fast random acess in read/write mode, non - volatility and low power for good performance. An integration of the ferroelectric on Si is the key importance and in this regard, there had been various models proposed like MFS, MFIS, MFMIS structure etc., Choosing the proper insulator is very essential for the better performance of the device and to exhibit excellent electrical characteristics. ZrTiO4 is a potential candidate because of its excellent thermal stability and lattice match on the Si substrate. SrBi2Ta2O9 and ZrTiO4 thin films were prepared on p - type Si substrate by pulsed excimer laser ablation technique. Optimization of both ZT and SBT thin films in MFS and MFIS structure had been done based on the annealing, oxygen partial pressures and substrate temperatures to have proper texture of the thin films. The dc leakage current, P - E hysteresis, capacitance - voltage and conductance - voltage measurement were carried out. The effect of the frequency dependence on MFIS structure was observed in the C – V curve. It displays a transition of C - V curve from high frequency to low frequency curve on subjection to varied frequencies. Density of interface states has been calculated using Terman and high - low frequency C - V curve. The effect of memory window in the C - V hysteresis were analysed in terms of film thickness and annealing temperatures. DC conduction mechanism were analysed in terms of poole - frenkel, Schottky and space charge limited conduction separately on MFS, MIS structure.
Resumo:
DC electric field induced dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) thin films were studied as a function of frequency at different temperatures. It was observed that the dielectric constant (ε) and dissipation factor (tanδ) were decreased in presence of bias field. The temperature of dielectric maxima was found to increase with increasing bias level. The low temperature (
Resumo:
To investigate the role of grain boundaries and other growth related microstructure in manganite films, a scanning tunneling microscope is used to simultaneously probe surface topography and local potential distribution under current flow at nanometer level in films of epitaxial thin films of La0.7Ca0.3MnO3 deposited on single crystal SrTiO3 and NdGaO3 substrate by laser ablation. We have studied two types of films strained and strain relaxed. Thin (50nm) films (strained due to lattice mismatch between substrate and the film) show step growth (unit cell steps) and have very smooth surfaces. Relatively thicker films (strain relaxed, thickness 200nm) do not have these step growths and show rather smooth well connected grains. Charge transport in these films is not uniform on the nanometer level and is accompanied by potential jumps at the internal surfaces. In particular scattering from grain boundaries results in large variations in the local potential resulting in fields as high as 104-105V/cm located near the grain boundaries. We discuss the role of local strain and strain inhomogeneties in determining the current transport in these films and their resistance and magnetoresistivity. In this paper we attempt to correlate between bulk electronic properties with microscopic electronic conduction using scanning tunneling microscopy and scanning tunneling potentiometry.
Resumo:
Thin films of BaZrO3 (BZ) were grown using a pulsed laser deposition technique on platinum coated silicon substrates. Films showed a polycrystalline perovskite structure upon different annealing procedures of in-situ and ex-situ crystallization. The composition analyses were done using Energy dispersive X-ray analysis (EDAX) and Secondary ion mass spectrometry (SIMS). The SIMS analysis revealed that the ZrO2 formation at the right interface of substrate and the film leads the degradation of the device on the electrical properties in the case of ex-situ crystallized films. But the in-situ films exhibited no interfacial formation. The dielectric properties have been studied for the different temperatures in the frequency regime of 40 Hz to 100kHz. The response of the film to external ac stimuli was studied at different temperatures, and it showed that ac conductivity values in the limiting case are correspond to oxygen vacancy motion. The electrical modulus is fitted to a stretched exponential function and the results clearly indicate the presence of the non-Debye type of dielectric relaxation in these materials.
Resumo:
The dielectric response of BaBi2Nb2O9 (BBN) thin films has been studied as a function of frequency over a wide range of temperatures. Both dielectric constant and loss tangent of BBN thin films showed a ‘power law’ dependence with frequency, which was analyzed using the Jonscher's universal dielectric response model. Theoretical fits were utilized to compare the experimental results and also to estimate the value of temperature dependence parameters such as n(T) and a(T) used in the Jonscher's model. The room temperature dielectric constant (ε') of the BBN thin films was 214 with a loss tangent (tanδ) of 0.04 at a frequency of 100 kHz. The films exhibited the second order dielectric phase transition from ferroelectric to paraelectric state at a temperature of 220 °C. The nature of phase transition was confirmed from the temperature dependence of dielectric constant and sponteneous polarization,respectively. The calculated Currie constant for BBN thin films was 4 × 105°C.