156 resultados para electro-optic modulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responses of redox regulatory system to long-term survival (> 18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 A degrees C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate Nearest Neighbour Field maps are commonly used by computer vision and graphics community to deal with problems like image completion, retargetting, denoising, etc. In this paper, we extend the scope of usage of ANNF maps to medical image analysis, more specifically to optic disk detection in retinal images. In the analysis of retinal images, optic disk detection plays an important role since it simplifies the segmentation of optic disk and other retinal structures. The proposed approach uses FeatureMatch, an ANNF algorithm, to find the correspondence between a chosen optic disk reference image and any given query image. This correspondence provides a distribution of patches in the query image that are closest to patches in the reference image. The likelihood map obtained from the distribution of patches in query image is used for optic disk detection. The proposed approach is evaluated on five publicly available DIARETDB0, DIARETDB1, DRIVE, STARE and MESSIDOR databases, with total of 1540 images. We show, experimentally, that our proposed approach achieves an average detection accuracy of 99% and an average computation time of 0.2 s per image. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method to study the air bubble dynamics and to burst the air bubbles formed on the electrode– electrolyte interface in a parallel gate electrode fluidic channel is demonstrated. Upon application of a voltage across the electrodes,volume of water contained between them begins to electrolyzing depending on the conductivity, as well as it boils due to heating effect. This results in bubble formation within. These bubbles grow in radius with higher potential difference applied across the electrodes. As an approach towards removing these bubbles, an alternating current is applied at low potential difference of a 5 volts and high frequency at few megahertz. The alternating electric field had a heating effect on the bubbles where the energy input due to current heats up water and bursts the bubble. The bubbles of size up to 480μm were burst at 2500 V/m using this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced bus-clamping pulse width modulation (ABCPWM) techniques are advantageous in terms of line current distortion and inverter switching loss in voltage source inverter-fed applications. However, the PWM waveforms corresponding to these techniques are not amenable to carrier-based generation. The modulation process in ABCPWM methods is analyzed here from a “per-phase” perspective. It is shown that three sets of descendant modulating functions (or modified modulating functions) can be generated from the three-phase sinusoidal signals. Each set of the modified modulating functions can be used to produce the PWM waveform of a given phase in a computationally efficient manner. Theoretical results and experimental investigations on a 5hp motor drive are presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a recently developed strong-coupling method, we present a comprehensive theory for doublon production processes in modulation spectroscopy of a three-dimensional system of ultracold fermionic atoms in an optical lattice with a trap. The theoretical predictions compare well to the experimental time traces of doublon production. For experimentally feasible conditions, we provide a quantitative prediction for the presence of a nonlinear ``two-photon'' excitation at strong modulation amplitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymatic regulation is a fast and reliable diagnosis tool via identification and design of inhibitors for modulation of enzyme function. Previous reports on quantum dots (QDs)-enzyme interactions reveal a protein-surface recognition ability leading to promising applications in protein stabilization, protein delivery, bio-sensing and detection. However, the direct use of QDs to control enzyme inhibition has never been revealed to date. Here we show that a series of biocompatible surface-functionalized metal-chalcogenide QDs can be used as potent inhibitors for malignant cells through the modulation of enzyme activity, while normal cells remain unaffected. The in vitro activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme involved critically in the glycolysis of cancer cells, is inactivated selectively in a controlled way by the QDs at a significantly low concentration (nM). Cumulative kinetic studies delineate that the QDs undergo both reversible and irreversible inhibition mechanisms owing to the site-specific interactions, enabling control over the inhibition kinetics. These complementary loss-of-function probes may offer a novel route for rapid clinical diagnosis of malignant cells and biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical and electrical characteristics of cellular network of the carbon nanotubes (CNT) impregnated with metallic and nonmetallic nanoparticles were examined simultaneously by employing the nanoindentation technique. Experimental results show that the nanoparticle dispersion not only enhances the mechanical strength of the cellular CNT by two orders of magnitude but also imparts variable nonlinear electrical characteristics; the latter depends on the contact resistance between nanoparticles and CNT, which is shown to depend on the applied load while indentation. Impregnation with silver nanoparticles enhances the electrical conductance, the dispersion with copper oxide and zinc oxide nanoparticles reduces the conductance of CNT network. In all cases, a power law behavior with suppression in the differential conductivity at zero bias was noted, indicating electron tunneling through the channels formed at the CNT-nanoparticle interfaces. These results open avenues for designing cellular CNT foams with desired electro-mechanical properties and coupling. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced bus-clamping switching sequences, which employ an active vector twice in a subcycle, are used to reduce line current distortion and switching loss in a space vector modulated voltage source converter. This study evaluates minimum switching loss pulse width modulation (MSLPWM), which is a combination of such sequences, for static reactive power compensator (STATCOM) application. It is shown that MSLPWM results in a significant reduction in device loss over conventional space vector pulse width modulation. Experimental verification is presented at different power levels of up to 150 kVA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel switching sequences have been proposed recently for a neutral-point-clamped three-level inverter, controlled effectively as an equivalent two-level inverter. It is shown that the four novel sequences can be grouped into two pairs of sequences. Using each pair of sequences, a hybrid pulsewidth modulation (PWM) technique is proposed, which deploys the two sequences in appropriate spatial regions to reduce the current ripple. Further, a third hybrid PWM technique is proposed which uses all the five sequences (including the conventional sequence) in appropriate spatial regions. Each proposed hybrid PWM is shown, both analytically and experimentally, to outperform its constituent PWM methods in terms of harmonic distortion. In particular, the third proposed hybrid PWM reduces the total harmonic distortion considerably at low- and high-speed ranges of a constant volts-per-hertz induction motor drive, compared to centered space vector PWM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digestive ripening, a postsynthetic treatment of colloidal nanoparticles, is a versatile method to produce monodisperse nanoparticles and to prepare various bimetallic nanostructures. The mechanism of this process is largely unknown. Herein, we present a systematic study conducted using Au nanoparticles prepared by a solvated metal atom dispersion method to probe the mechanistic aspects of digestive ripening. In our study, experimental conditions such as concentration of capping agent, reaction time, and temperature, were found to influence the course of the digestive ripening process. Here it is shown that, during digestive ripening under reflux, nanoparticles within an optimum size window are conserved, and surface etching facilitated mass transfer resulted in monodisperse nanoparticles. Overall, digestive ripening can be considered as a kinetically controlled thermodynamic process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong atmospheric turbulence is a major hindrance in wireless optical communication systems. In this paper, the performance of a wireless optical communication system is analyzed using different modulation formats such as, binary phase shift keying-subcarrier intensity modulation (BPSK-SIM), differential phase shift keying (DPSK), differential phase shift keying-subcarrier intensity modulation (DPSK-SIM), Mary pulse position modulation (M-PPM) and polarization shift keying (PoISK). The atmospheric channel is modeled for strong atmospheric turbulences with combined effect of turbulence and pointing errors. Novel closed-form analytical expressions for average bit error rate (BER), channel capacity and outage probability for the various modulation techniques, viz. BPSK-SIM, DPSK, DPSK-SIM, PoISK and M-PPM are derived. The simulated results for BER, channel capacity and outage probability of various modulation techniques are plotted and analyzed. (C) 2014 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DC capacitor is an important component in a voltage source inverter.The RMS current flowing through the capacitor determines the capacitor size and losses. The losses, in turn, influence the capacitor life. This paper proposes a space vector based modulation strategy for reducing the capacitor RMS current in a three-level diode-clamped inverter. An analytical closed-form expression is derived for the DC capacitor RMS current with the proposed PWM strategy. The analytical expression is validated through simulations and also experimentally. Theoretical and experimental results are presented, comparing the proposed strategy with conventional space vector PWM (CSVPWM). It is shown that the proposed strategy reduces the capacitor RMS current significantly at high modulation indices and high power factors. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the effect of topological as well as lattice vacancy defects on the electro-thermal transport properties of the metallic zigzag graphene nano ribbons at their ballistic limit. We employ the density function theory-Non equilibrium green's function combination to calculate the transmission details. We then present an elaborated study considering the variation in the electrical current and the heat current transport with the change in temperature as well as the voltage gradient across the nano ribbons. The comparative analysis shows, that in the case of topological defects, such as the Stone-Wales defect, the electrical current transport is minimum. Besides, for the voltage gradient of 0.5 Volt and the temperature gradient of 300 K, the heat current transport reduces by similar to 62 % and similar to 50% for the cases of Stones-Wales defect and lattice vacancy defect respectively, compared to that of the perfect one.