188 resultados para diffraction efficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work explores the electrical transport and UV photoresponse properties of GaN nanodots (NDs) grown by molecular beam epitaxy (MBE). Single-crystalline wurtzite structure of GaN NDs is verified by X-ray diffraction and transmission electron microscopy (TEM). The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of GaN NDs were studied in a metal-semiconductor-metal configuration. Dark I-V characteristics of lateral grown GaN NDs obeyed the Frenkel-Poole emission model, and the UV response of the device was stable and reproducible with on/off. The responsivity of the detectors is found to be 330 A/W with an external quantum efficiency of 1100%. (C) 2012 The Japan Society of Applied Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion equation-based modeling of near infrared light propagation in tissue is achieved by using finite-element mesh for imaging real-tissue types, such as breast and brain. The finite-element mesh size (number of nodes) dictates the parameter space in the optical tomographic imaging. Most commonly used finite-element meshing algorithms do not provide the flexibility of distinct nodal spacing in different regions of imaging domain to take the sensitivity of the problem into consideration. This study aims to present a computationally efficient mesh simplification method that can be used as a preprocessing step to iterative image reconstruction, where the finite-element mesh is simplified by using an edge collapsing algorithm to reduce the parameter space at regions where the sensitivity of the problem is relatively low. It is shown, using simulations and experimental phantom data for simple meshes/domains, that a significant reduction in parameter space could be achieved without compromising on the reconstructed image quality. The maximum errors observed by using the simplified meshes were less than 0.27% in the forward problem and 5% for inverse problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out synchrotron based high-pressure x-ray diffraction study of orthorhombic EuMnO3, GdMnO3, TbMnO3 and DyMnO3 up to 54.4, 41.6, 47.0 and 50.2 GPa, respectively. The diffraction peaks of all the four manganites shift monotonically to higher diffraction angles and the crystals retain the orthorhombic structure till the highest pressure. We have fitted the observed volume versus pressure data with the Birch-Murnaghan equation of state and determined the bulk modulus to be 185 +/- 6 GPa, 190 +/- 16 GPa, 188 +/- 9 GPa and 192 +/- 8 GPa for EuMnO3, GdMnO3, TbMnO3 and DyMnO3, respectively. The bulk modulus of EuMnO3 is comparable to other manganites, in contrast to theoretical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The angles at which a light beam gets diffracted by a grating depend strongly on the direction of incidence for diffraction angles close to a right angle. Accordingly, it is possible to amplify small beam deflections by placing a grating at an optimal orientation to the light path. We use this principle to amplify small beam deviations arising out of a light beam refracting at the interface of an optically active medium, and demonstrate a new technique of enhancing the limit of detection of chiro-optical measurements. (C) 2012 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the operation and the output power of a quantum heat engine that converts incoherent thermal energy into coherent cavity photons can be optimized by manipulating quantum coherences. The gain or loss in the efficiency at maximum power depends on the details of the output power optimization. Quantum effects tend to enhance the output power and the efficiency as the photon occupation in the cavity is decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the region spanning residues 95-146 of the rotavirus nonstructural protein NSP4 from the asymptomatic human strain ST3 was determined at a resolution of 2.5 angstrom. Severe diffraction anisotropy, rotational pseudo-symmetry and twinning complicated the refinement of this structure. A systematic explanation confirming the crystal pathologies and describing how the structure was successfully refined is given in this report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new thieno3,2-b]thiophenediketopyrrolopyrrole-benzo1,2-b:4,5-b']dithio phene based narrow optical gap co-polymer (PTTDPP-BDT) has been synthesized and characterized for field-effect transistors and solar cells. In field-effect transistors the polymer exhibited ambipolar charge transport behaviour with maximum hole and electron mobilities of 10(-3) cm(2) V-1 s(-1) and 10(-5) cm(2)V(-1) s(-1), respectively. The respectable charge transporting properties of the polymer were consistent with X-ray diffraction measurements that showed close molecular packing in the solid state. The difference in hole and electron mobilities was explained by density functional theory calculations, which showed that the highest occupied molecular orbital was delocalized along the polymer backbone with the lowest unoccupied molecular orbital localized on the bis(thieno3,2-b]thiophene)diketopyrrolopyrrole units. Bulk heterojunction photovoltaic devices with the fullerene acceptor PC70BM were fabricated and delivered a maximum conversion efficiency of 3.3% under AM1.5G illumination. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu3+ = 1, Tb3+ = 2, and Gd3+ = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {Eu(L)(3)(H2O)(2)]}(n) (1) and {Tb(L)(3)(H2O)]center dot(H2O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb3+ emission (Phi(overall) = 64%) thanks to the favorable position of the triplet state ((3)pi pi*) of the ligand the energy difference between the triplet state of the ligand and the excited state of Tb3+ (Delta E) = (3)pi pi* - D-5(4) = 3197 cm(-1)], as investigated in the Gd3+ complex. On the other hand, the corresponding Eu3+ complex shows weak luminescence efficiency (Phi(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (Delta E = (3)pi pi* - D-5(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu3+ and Tb3+ ions with the general formula {Eu0.5Tb0.5(L)(3)(H2O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb3+ and Eu3+ in a mixed lanthanide system (eta = 86%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titania (TiO2) nano-photocatalysts, with different phases, prepared using a modified sol-gel process were employed in the degradation of rhodamine at 10 mg L-1 concentration. The degradation efficiency of these nano-photocatalysts was compared to that of commercial Degussa P25 titania. It was found that the nanocatalysts calcined at 450 degrees C and the Degussa P25 titania had similar photoreactivity profiles. The commercial Degussa P25 nanocatalysts had an overall high apparent rate constant of (K-app) of 0.023 min(-1). The other nanocatalyst had the following rate constants: 0.017, 0.0089, 0.003 and 0.0024 min(-1) for 450, 500, 550 and 600 degrees C calcined catalysts, respectively. This could be attributed to the phase of the titania as the anatase phase is highly photoactive than the other phases. Furthermore, characterisation by differential scanning calorimetry showed the transformation of titania from amorphous to anatase and finally to rutile phase. SEM and TEM characterisations were used to study the surface morphology and internal structure of the nanoparticles. BET results show that as the temperature of calcinations was raised, the surface area reduced marginally. X-ray diffraction was used to confirm the different phases of titania. This study has led to a conclusion that the anatase phase of the titania is the most photoactive nanocatalyst. It also had the highest apparent rate constant of 0.017 min(-1), which is similar to that of the commercial titania.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleation and growth of vanadium oxide nanotubes (VOx-NT) have been followed by a combination of numerous ex situ techniques. long the hydrothermal process. Intermediate solid phases extracted at different reaction times have been characterized by powder X-ray diffraction, scanning and transmission electron microscopy, electron spin resonance, and V-K edge :X-ray absorption near-edge structure spectroscopy. The supernatant vanadate solutions extracted during the hydrothermal treatment have been studied by liquid V-51 NMR and flame. spectroscopy. For short durations of the hydrothermal synthesis, the initial V2O5-surfactant intercalate. is progressively transformed into VOx-NT whose crystallization starts to be detected after a hydrothermal treatment of 24 h. Upon heating from 24 h to 7 days, VOx-NT are obtained in larger amount and with an improved crystallinity. The detection of soluble amines and cyclic metavanadate V4O12](4-) in the supernatant solution along the hydrothermal process suggests that VOx-NT result from a dissolution precipitation mechanism. Metavanadate species V4O12](4-) could behave as molecular precursors in the polymerization reactions leading to VOx-NT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high efficiency of fuel-cell-powered electric vehicles makes them a potentially viable option for future transportation. Polymer Electrolyte Fuel Cells (PEFCs) are most promising among various fuel cells for electric traction due to their quick start-up and low-temperature operation. In recent years, the performance of PEFCs has reached the acceptable level both for automotive and stationary applications and efforts are now being expended in increasing their durability, which remains a major concern in their commercialization. To make PEFCs meet automotive targets an understanding of the factors affecting the stability of carbon support and platinum catalyst is critical. Alloying platinum (Pt) with first-row transition metals such as cobalt (Co) is reported to facilitate both higher degree of crystallinity and enhanced activity in relation to pristine Pt. But a major challenge for the application of Pt-transition metal alloys in PEFCs is to improve the stability of these binary catalysts. Dissolution of the non-precious metal in the acidic environment could alleviate the activity of the catalysts and hence cell performance. The use of graphitic carbon as cathode-catalyst support enhances the long-term stability of Pt and its alloys in relation to non-graphitic carbon as the former exhibits higher resistance to carbon corrosion in relation to the latter in PEFC cathodes during accelerated-stress test (AST). Changes in electrochemical surface area (ESA), cell performance and charge-transfer resistance are monitored during AST through cyclic voltammetry, cell polarization and impedance measurements, respectively. Studies on catalytic electrodes with X-ray diffraction, Raman spectroscopy and transmission electron microscopy reflect that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt and Pt3Co catalyst particles. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.051301jes] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunability of electron recombination time and light to electricity conversion efficiency to superior values in semiconductor sensitized solar cells via optimized design of nanocrystal light sensitizer shape is discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success of AAV2 mediated hepatic gene transfer in human trials for diseases such as hemophilia has been hampered by a combination of low transduction efficiency and a robust immune response directed against these vectors. We have previously shown that AAV2 is targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal degradation machinery and modification of the serine(S)/threonine(T) kinase and lysine(K) targets on AAV capsid is beneficial. Thus targeted single mutations of S/T>A(S489A, S498A, T251A) and K>R (K532R) improved the efficiency of gene transfer in vivo as compared to wild type (WT)-AAV2 vectors (∼6-14 fold). In the present study, we evaluated if combined alteration of the phosphodegrons (PD), which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, improves further the gene transfer efficiency. Thus, we generated four multiple mutant vectors (PD: 1+3, S489A+K532R, PD: 1+3, S489A+K532R together with T251 residue which did not lie in any of the phosphodegrons but had shown increased transduction efficiency compared to the WT-AAV2 vector (∼6 fold) and was also conserved in 9 out of 10 AAV serotypes (AAV 1 to 10), PD: 1+3, S489A+K532R+S498A and a fourth combination of PD: 3, K532R+T251. We then evaluated them in vitro and in vivo and compared their gene transfer efficiency with either the WT-AAV2 or the best single mutant S489A-AAV2 vector. The novel multiple mutations on the AAV2 capsid did not affect the overall vector packaging efficiency. All the multiple AAV2 mutants showed superior transduction efficiency in HeLa cells in vitro when compared to either the WT (62-72% Vs 21%) or the single mutant S489A (62-72% Vs 50%) AAV2 vectors as demonstrated by FACS analysis (Fig. 1A). On hepatic gene transfer with 5x10^10 vgs per animal in C57BL/6 mice, all the multiple mutants showed increased transgene expression compared to either the WT-AAV2 (∼15-23 fold) or the S489A single mutant vector (∼2-3 fold) (Fig.1B and C). These novel multiple mutant AAV2 vectors also showed higher vector copy number in murine hepatocytes 4 weeks post transduction, as compared to the WT-AAV2 (∼5-6 Vs 1.4 vector copies/diploid genome) and further higher when compared to the single mutant S489A(∼5-6 fold Vs 3.8 fold) (Fig.1D). Further ongoing studies will demonstrate the therapeutic benefit of one or more of the multiple mutants vectors in preclinical models of hemophilia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon Nanotubes (CNTs) grown on substrates are potential electron sources in field emission applications. Several studies have reported the use of CNTs in field emission devices, including field emission displays, X-ray tube, electron microscopes, cathode-ray lamps, etc. Also, in recent years, conventional cold field emission cathodes have been realized in micro-fabricated arrays for medical X-ray imaging. CNTbased field emission cathode devices have potential applications in a variety of industrial and medical applications, including cancer treatment. Field emission performance of a single isolated CNT is found to be remarkable, but the situation becomes complex when an array of CNTs is used. At the same time, use of arrays of CNTs is practical and economical. Indeed, such arrays on cathode substrates can be grown easily and their collective dynamics can be utilized in a statistical sense such that the average emission intensity is high enough and the collective dynamics lead to longer emission life. The authors in their previous publications had proposed a novel approach to obtain stabilized field emission current from a stacked CNT array of pointed height distribution. A mesoscopic modeling technique was employed, which took into account electro-mechanical forces in the CNTs, as well as transport of conduction electron coupled with electron phonon induced heat generation from the CNT tips. The reported analysis of pointed arrangements of the array showed that the current density distribution was greatly localized in the middle of the array, the scatter due to electrodynamic force field was minimized, and the temperature transients were much smaller compared to those in an array with random height distribution. In the present paper we develop a method to compute the emission efficiency of the CNT array in terms of the amount of electrons hitting the anode surface using trajectory calculations. Effects of secondary electron emission and parasitic capacitive nonlinearity on the current-voltage signals are accounted. Field emission efficiency of a stacked CNT array with various pointed height distributions are compared to that of arrays with random and uniform height distributions. Effect of this parasitic nonlinearity on the emission switch-on voltage is estimated by model based simulation and Monte Carlo method.