503 resultados para crystal morphology
Resumo:
Transition metal [Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)] complexes of a new Schiff base, 3-acetylcoumarin-o-aminobenzoylhydrazone were synthesized and characterized by elemental analyses, magnetic moments, conductivity measurements, spectral [Electronic, IR, H-1 and C-13 NMR, EPR] and thermal studies. The ligand crystallizes in the monoclinic system, space group P2(1)/n with a = 9.201(5), b = 16.596( 9), c = 11.517(6) angstrom, beta= 101.388(9)degrees, V = 1724.2 (17) angstrom(3) and Z = 4. Conductivity measurements indicated Mn(II) and Co(II) complexes to be 1 : 1 electrolytes whereas Ni(II), Cu(II), Zn(II) and Cd(II) complexes are non-electrolytes. Electronic spectra reveal that all the complexes possess four-coordinate geometry around the metal.
Resumo:
Microstructure and microtexture evolution during static annealing of a hot-extruded AZ21 magnesium alloy was studied. Apart from fine recrystallized equiaxed grains and large elongated deformed grains, a new third kind of abnormal grains that are stacked one after the other in a row parallel to the extrusion direction were observed. The crystallographic misorientation inside these grains was similar to that of the fine recrystallized grains. The large elongated grains exhibited significant in-grain misorientation. A self-consistent mechanistic model was developed to describe the formation of these grain morphologies during dynamic recrystallization (DRX). The texture of pre-extruded material, although lost in DRX, leaves a unique signature which manifests itself in the form of these grain morphologies. The origin of abnormal stacked grains was associated with slow nucleation in pre-extruded grains of a certain orientation. Further annealing resulted in large secondary recrystallized grains with occasional extension twins. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report the destabilization of the charge ordered insulating (COI) state in a localized region of Pr0.63Ca0.37MnO3 single crystal by current injection using a scanning tunneling microscope tip. This leads to controlled phase separation and formation of localized metallic nanoislands in the COI matrix which have been detected by local tunneling conductance mapping. The metallic regions thus created persist even after reducing the injected current to lower values. The original conductance state can be restored by injecting a current of similar magnitude but of opposite polarity. We thus achieve reversible nanoscale phase separation that gives rise to the possibility to "write, read, and erase" nanosized conducting regions in an insulating matrix with high spatial resolution. (c) 2007 American Institute of Physics.
Resumo:
We report the surface laser damage threshold in sodium p-nitrophenolate dihydrate, a nonlinear optical crystal. The experiment is performed with a pulsed Nd:YAG laser in TEM00 mode. The single shot damage thresholds are 11.16 +/- 0.28GWcm(-2) and 1.25 +/- 0.02GWcm(-2) for 1064 nm and 532 nm laser wavelengths respectively. A close correlation between the laser damage threshold and mechanical hardness is observed. A possible mechanism of laser damage is discussed.
Resumo:
To gain a better understanding of recent experiments on the turbulence-induced melting of a periodic array of vortices in a thin fluid film, we perform a direct numerical simulation of the two-dimensional Navier-Stokes equations forced such that, at low Reynolds numbers, the steady state of the film is a square lattice of vortices. We find that as we increase the Reynolds number, this lattice undergoes a series of nonequilibrium phase transitions, first to a crystal with a different reciprocal lattice and then to a sequence of crystals that oscillate in time. Initially, the temporal oscillations are periodic; this periodic behaviour becoming more and more complicated with increasing Reynolds number until the film enters a spatially disordered nonequilibrium statistical steady state that is turbulent. We study this sequence of transitions using fluid-dynamics measures, such as the Okubo-Weiss parameter that distinguishes between vortical and extensional regions in the flow, ideas from nonlinear dynamics, e.g. Poincare maps, and theoretical methods that have been developed to study the melting of an equilibrium crystal or the freezing of a liquid and that lead to a natural set of order parameters for the crystalline phases and spatial autocorrelation functions that characterize short- and long-range order in the turbulent and crystalline phases, respectively.
Resumo:
Creating nanoscale heterostructures with molecular-scale (<2 nm) metal wires is critical for many applications and remains a challenge. Here, we report the first time synthesis of nanoscale heterostructures with single-crystal molecular-scale Au nanowires attached to different nanostructure substrates. Our method involves the formation of Au nanoparticle seeds by the reduction of rocksalt AuCl nanocubes heterogeneously nucleated on the Substrates and subsequent nanowire growth by oriented attachment of Au nanoparticles from the Solution phase. Nanoscale heterostructures fabricated by such site-specific nucleation and growth are attractive for many applications including nanoelectronic device wiring, catalysis, and sensing.
Resumo:
We demonstrate that commonly face-centered cubic (fcc) metallic nanowires can be stabilized in hexagonal structures even when their surface energy contribution is relatively small. With a modified electrochemical growth process, we have grown purely single-crystalline 4H silver nanowires (AgNWs) of diameters as large as 100 nm within nanoporous anodic alumina and polycarbonate templates. The growth process is not limited by the/Ag Nernst equilibrium potential, and time-resolved imaging with high-resolution transmission electron microscopy (TEM) indicates a kinematically new mechanism of nanowire growth. Most importantly, our experiments aim to separate the effects of confinement and growth conditions on the crystal structure of nanoscale systems.
Resumo:
α-Manganese dioxide is synthesized in a microemulsion medium by a redox reaction between KMnO4 and MnSO4 in presence of sodium dodecyl sulphate as a surface active agent. The morphology of MnO2 resembles nanopetals, which are spread parallel to the field. The material is further characterized by powder X-ray diffraction, energy dispersive analysis of X-ray, and Brunauer–Emmett–Teller surface area. Supercapacitance property of α-MnO2 nanopetals is studied by cyclic voltammetry and galvanostatic charge–discharge cycling. High values of specific capacitance are obtained.
Resumo:
It is well known that protein crystallizability can be influenced by site-directed mutagenesis of residues on the molecular surface of proteins, indicating that the intermolecular interactions in crystal-packing regions may play a crucial role in the structural regularity at atomic resolution of protein crystals. Here, a systematic examination was made of the improvement in the diffraction resolution of protein crystals on introducing a single mutation of a crystal-packing residue in order to provide more favourable packing interactions, using diphthine synthase from Pyrococcus horikoshii OT3 as a model system. All of a total of 21 designed mutants at 13 different crystal-packing residues yielded almost isomorphous crystals from the same crystallization conditions as those used for the wild-type crystals, which diffracted X-rays to 2.1 angstrom resolution. Of the 21 mutants, eight provided crystals with an improved resolution of 1.8 angstrom or better. Thus, it has been clarified that crystal quality can be improved by introducing a suitable single mutation of a crystal-packing residue. In the improved crystals, more intimate crystal-packing interactions than those in the wild-type crystal are observed. Notably, the mutants K49R and T146R yielded crystals with outstandingly improved resolutions of 1.5 and 1.6 angstrom, respectively, in which a large-scale rearrangement of packing interactions was unexpectedly observed despite the retention of the same isomorphous crystal form. In contrast, the mutants that provided results that were in good agreement with the designed putative structures tended to achieve only moderate improvements in resolution of up to 1.75 angstrom. These results suggest a difficulty in the rational prediction of highly effective mutations in crystal engineering.
Resumo:
The enzyme UDP-galactose-4-epimerase (GAL10) catalyzes a key step in galactose metabolism converting UDP-galactose to UDPglucose which then can get metabolized through glycolysis and TCA cycle thus allowing the cell to use galactose as a carbon and energy source. As in many fungi, a functional homolog of GAL10 exists in Candida albicans. The domainal organization of the homologs from Saccharomyces cerevisiae and C albicans show high degree of homology having both mutarotase and an epimerase domain. The former is responsible for the conversion of beta-D-galactose to alpha-D-galactose and the hitter for epimerization of UDP-galactose to UDP-glucose. Absence of C albicans GAL10 (CaGAL10) affects cell-wall organization, oxidative stress response, biofilm formation and filamentation. Cagal10 mutant cells tend to flocculate extensively as compared to the wild-type cells. The excessive filamentation in this mutant is reflected in its irregular and wrinkled colony morphology. Cagal10 strain is more susceptible to oxidative stress when tested in presence of H2O2. While the S. cerevsiae GAL10 (ScGAL10), essential for survival in the presence of galactose, has not been reported to have defects in the absence of galactose, the C albicans homolog shows these phenotypes during growth in the absence of galactose. Thus a functional CaGal10 is required not only for galactose metabolism but also for normal hyphal morphogenesis, colony morphology, maintenance of cell-wall integrity and for resistance to oxidative stress even in the absence of galactose. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Evidence for the generalized anomeric effect (GAE) in the N-acyl-1,3-thiazolidines, an important structural motif in the penicillins, was sought in the crystal structures of N-(4-nitrobenzoyl)-1,3-thiazolidine and its (2:1) complex with mercuric chloride, N-acetyl-2-phenyl-1,3-thiazolidine, and the (2:1) complex of N-benzoyl-1,3-thiazolidine with mercuric bromide. An inverse relationship was generally observed between the. C-2-N and C-2-S bond lengths of the thiazolidine ring, supporting the existence of the GAE. (Maximal bond length changes were similar to 0.04 angstrom for C-2-N-3, S-1-C-2, and similar to 0.08 angstrom for N-3-C-6.) Comparison with N-acylpyrrolidines and tetrahydrothiophenes indicates that both the nitrogen-to-sulphur and sulphur-to-nitrogen GAE's operate simultaneously in the 1,3-thiazolidines, the former being dominant. (This is analogous to the normal and exo-anomeric effects in pyranoses, and also leads to an interesting application of Baldwin's rules.) The nitrogen-to-sulphur GAE is generally enhanced in the mercury(II) complexes (presumably via coordination at the sulphur); a 'competition' between the GAE and the amide resonance of the N-acyl moiety is apparent. There is evidence for a 'push-pull' charge transfer between the thiazolidine moieties in the mercury(II) complexes, and for a 'back-donation' of charge from the bromine atoms to the thiazolidine moieties in the HgBr2 complex. (The sulphur atom appears to be sp(2) hybridised in the mercury(II) complexes, possibly for stereoelectronic reasons.) These results are apparently relevant to the mode of action of the penicillins. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacteritan tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme frorn Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body, of the molecule and a polypepticle Y stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
An apolar helical decapeptide with different end groups, Boc- or Ac-, crystallizes in a completely parallel fashion for the Boc-analog and in an antiparallel fashion for the Ac-analog. In both crystals, the packing motif consists of rows of parallel molecules. In the Boc-crystals, adjacent rows assemble with the helix axes pointed in the same direction. In the Ac-crystals, adjacent rows assemble with the helix axes pointed in opposite directions. The conformations of the molecules in both crystals are quite similar, predominantly alpha-helical, except for the tryptophanyl side chain where chi 1 congruent to 60 degrees in the Boc- analog and congruent to 180 degrees in the Ac-analog. As a result, there is one lateral hydrogen bond between helices, N(1 epsilon)...O(7), in the Ac-analog. The structures do not provide a ready rationalization of packing preference in terms of side-chain interactions and do not support a major role for helix dipole interactions in determining helix orientation in crystals. The crystal parameters are as follow. Boc-analog: C60H97N11O13.C3H7OH, space group Pl with a = 10.250(3) A, b = 12.451(4) A, c = 15.077(6) A, alpha = 96.55(3) degrees, beta = 92.31(3) degrees, gamma = 106.37(3) degrees, Z = 1, R = 5.5% for 5581 data ([F] greater than 3.0 sigma(F)), resolution 0.89 A. Ac-analog: C57H91N11O12, space group P2(1) with a = 9.965(1) A, b = 19.707(3) A, c = 16.648(3) A, beta = 94.08(1), Z = 2, R = 7.2% for 2530 data ([F] greater than 3.0 sigma(F)), resolution 1.00 A.
Resumo:
Two IS- and 16-residue peptides containing a-aminoisobutyric acid (Aib) have been synthesized, as part of a strategy to construct stereochemically rigid peptide helices, in a modular approach to design of protein mimics. The peptides Boc-(Val-Ala-Leu-Aib),-OMe ( I ) and Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-(Val-Ala-Leu-Aib()11z)- OhaMvee been crystallized.Both crystals are stable only in the presence of mother liquor or water. The crystal data are as follows. I: C78H140N16019~2H20,P2,, a = 16.391 (3) A, b = 16.860 (3) A, c = 18.428 (3) A, p = 103.02 (I)O, Z = 2, R = 9.6% for 3445 data with lFol >30(F), resolution 0.93 A. 11: C7,Hl,,N,S018.7.5H,0, C2221, a = 18.348 ( 5 ) A, b = 47.382 (1 1) A, c = 24.157 ( 5 ) A, Z =8, R = l0,6%, for 3147 data with lFol > 3a(F), resolution 1.00 A. The 15-residue peptide (11) is entirely a helical, while the 16-residue peptide ( I ) has a short segment of 310 helix at the N terminus. The packing of the helices in the crystals is rather incfficicnt with no particular attractions between Leu-Leu side chains, or any other pair. Both crystals have fairly large voids, which are filled with water molecules in a disordered fashion. Water molecule sites near the polar head-to-tail regions are well detcrmined, those closer to the hydrophobic side chains less so and a number of possible water sites in the remaining "empty" space are not determined. No interdigitation of Leu side chains is observed in the crystal as is hypothesized in the "leucine zipper" class of DNA binding proteins.