128 resultados para bounded gaps
Resumo:
Thin films of ZnO, Li doped ZnO (ZLO) and multilayer of ZnO and ZLO (ZnO/ZLO) were grown on silicon and corning glass substrates by pulsed laser deposition technique. Single phase formation and the crystalline qualities of the films were analyzed by X-ray diffraction and Li composition in the film was investigated to be 15 wt% by X-ray photoelectron spectroscopy. Raman spectrum reveals the hexagonal wurtzite structure of ZnO, ZLO and ZnO/ZLO multilayer and confirms the single phase formation. Films grown on corning glass shows more than 80% transmittance in the visible region and the optical band gaps were calculated to be 3.245, 3.26 and 3.22 eV for ZnO, ZLO and ZnO/ZLO, respectively. An efficient blue emission was observed in all films which were grown on silicon (1 0 0) substrate by photoluminescence (PL). PL measurements at different temperatures reveal that the PL emission intensity of ZnO/ZLO multilayer was weakly dependent on temperature as compared to the single layers of ZnO and ZLO and the wavelength of emission was independent of temperature. Our results indicate that ZnO/ZLO multilayer can be used for the fabrication of blue light emitting diodes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We give a detailed construction of a finite-state transition system for a com-connected Message Sequence Graph. Though this result is well-known in the literature and forms the basis for the solution to several analysis and verification problems concerning MSG specifications, the constructions given in the literature are either not amenable to implementation, or imprecise, or simply incorrect. In contrast we give a detailed construction along with a proof of its correctness. Our transition system is amenable to implementation, and can also be used for a bounded analysis of general (not necessarily com-connected) MSG specifications.
Resumo:
Combinatorial exchanges are double sided marketplaces with multiple sellers and multiple buyers trading with the help of combinatorial bids. The allocation and other associated problems in such exchanges are known to be among the hardest to solve among all economic mechanisms. In this paper, we develop computationally efficient iterative auction mechanisms for solving combinatorial exchanges. Our mechanisms satisfy Individual-rationality (IR) and budget-nonnegativity (BN) properties. We also show that our method is bounded and convergent. Our numerical experiments show that our algorithm produces good quality solutions and is computationally efficient.
Resumo:
Single-wall carbon nanotubes (SWNTs) are fascinating systems exhibiting many novel physical properties. In this paper, we give a brief review of the structural, electronic, vibrational, and mechanical properties of carbon nanotubes. In situ resonance Raman scattering of SWNTs investigated under electrochemical biasing demonstrates that the intensity of the radial breathing mode varies significantly in a nonmonotonic manner as a function of the cathodic bias voltage, but does not change appreciably under anodic bias. These results can be quantitatively understood in terms of the changes in the energy gaps between the 1 D van Hove singularities in the electron density of states, arising possibly due to the alterations in the overlap integral of pi bonds between the p-orbitals of the adjacent carbon atoms. In the second part of this paper, we review our high-pressure X-ray diffraction results, which show that the triangular lattice of the carbon nanotube bundles continues to persist up to similar to10 GPa. The lattice is seen to relax just before the phase transformation, which is observed at similar to10 GPa. Further, our results display the reversibility of the 2D lattice symmetry even after compression up to 13 GPa well beyond the 5 GPa value observed recently. These experimental results explicitly validate the predicted remarkable mechanical resilience of the nanotubes.
Resumo:
When the cold accretion disc coupling between neutral gas and a magnetic field is so weak that the magnetorotational instability is less effective or even stops working, it is of prime interest to investigate the pure hydrodynamic origin of turbulence and transport phenomena. As the Reynolds number increases, the relative importance of the non-linear term in the hydrodynamic equation increases. In an accretion disc where the molecular viscosity is too small, the Reynolds number is large enough for the non-linear term to have new effects. We investigate the scenario of the `weakly non-linear' evolution of the amplitude of the linear mode when the flow is bounded by two parallel walls. The unperturbed flow is similar to the plane Couette flow, but with the Coriolis force included in the hydrodynamic equation. Although there is no exponentially growing eigenmode, because of the self-interaction, the least stable eigenmode will grow in an intermediate phase. Later, this will lead to higher-order non-linearity and plausible turbulence. Although the non-linear term in the hydrodynamic equation is energy-conserving, within the weakly non-linear analysis it is possible to define a lower bound of the energy (alpha A(c)(2), where A(c) is the threshold amplitude) needed for the flow to transform to the turbulent phase. Such an unstable phase is possible only if the Reynolds number >= 10(3-4). The numerical difficulties in obtaining such a large Reynolds number might be the reason for the negative result of numerical simulations on a pure hydrodynamic Keplerian accretion disc.
Resumo:
Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe-12. The largest calculation involves the Fe-12 ring which spans a Hilbert space dimension of about 145x10(6) for the M-S=0 subspace. Our calculated gaps from the singlet ground state to the excited triplet state agree well with the experimentally measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for ferric wheels. The spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap between the ground and first excited states defining the inverse of the moment of inertia. We have studied the quantum dynamics of Fe-10 as a representative of ferric wheels. We use the low-lying states of Fe-10 to solve exactly the time-dependent Schrodinger equation and find the magnetization of the molecule in the presence of an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of the magnetization which is dependent on the amplitude of the ac field. We have also studied the torque response of Fe-12 as a function of a magnetic field, which clearly shows spin-state crossover.
Resumo:
Model Reference Adaptive Control (MRAC) of a wide repertoire of stable Linear Time Invariant (LTI) systems is addressed here. Even an upper bound on the order of the finite-dimensional system is unavailable. Further, the unknown plant is permitted to have both minimum phase and nonminimum phase zeros. Model following with reference to a completely specified reference model excited by a class of piecewise continuous bounded signals is the goal. The problem is approached by taking recourse to the time moments representation of an LTI system. The treatment here is confined to Single-Input Single-Output (SISO) systems. The adaptive controller is built upon an on-line scheme for time moment estimation of a system given no more than its input and output. As a first step, a cascade compensator is devised. The primary contribution lies in developing a unified framework to eventually address with more finesse the problem of adaptive control of a large family of plants allowed to be minimum or nonminimum phase. Thus, the scheme presented in this paper is confined to lay the basis for more refined compensators-cascade, feedback and both-initially for SISO systems and progressively for Multi-Input Multi-Output (MIMO) systems. Simulations are presented.
Resumo:
The forced oscillations due to a point forcing effect in an infinite or contained, inviscid, incompressible, rotating, stratified fluid are investigated taking into account the density variation in the inertia terms in the linearized equations of motion. The solutions are obtained in closed form using generalized Fourier transforms. Solutions are presented for a medium bounded by a finite cylinder when the oscillatory forcing effect is acting at a point on the axis of the cylinder. In both the unbounded and bounded case, there exist characteristic cones emanating from the point of application of the force on which either the pressure or its derivatives are discontinuous. The perfect resonance existing at certain frequencies in an unbounded or bounded homogeneous fluid is avoided in the case of a confined stratified fluid.