251 resultados para Vortex configurations
Resumo:
This paper deals with the investigation of the vibration characteristics of simply-supported unsymmetric trapezoidal plates. For numerical calculations, the relationship between the eigenvalue problems of a polygonal simply-supported plate and polygonal membrane is again effectively utilized. The Galerkin method is applied, with the deflection surface expressed in terms of a Fourier sine series in transformed coordinates. Numerical values for the first seven to eight frequencies for different geometries of the unsymmetric trapezoid are presented in the form of tables. Also the nodal patterns for a few representative configurations are presented.
Resumo:
Thermotropic liquid crystals are known to display rich phase behavior on temperature variation. Although the nematic phase is orientationally ordered but translationally disordered, a smectic phase is characterized by the appearance of a partial translational order in addition to a further increase in orientational order. In an attempt to understand the interplay between orientational and translational order in the mesophases that thermotropic liquid crystals typically exhibit upon cooling from the high-temperature isotropic phase, we investigate the potential energy landscapes of a family of model liquid crystalline systems. The configurations of the system corresponding to the local potential energy minima, known as the inherent structures, are determined from computer simulations across the mesophases. We find that the depth of the potential energy minima explored by the system along an isochor grows through the nematic phase as temperature drops in contrast to its insensitivity to temperature in the isotropic and smectic phases. The onset of the growth of the orientational order in the parent phase is found to induce a translational order, resulting in a smectic-like layer in the underlying inherent structures; the inherent structures, surprisingly, never seem to sustain orientational order alone if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. The Arrhenius temperature dependence of the orientational relaxation time breaks down near the isotropic-nematic transition. We find that this breakdown occurs at a temperature below which the system explores increasingly deeper potential energy minima.
Resumo:
A two-stage pulse tube cryocooler (PTC) which produces a no-load temperature of similar to 2.5 K in its second stage at an operating frequency of 1.6 Hz has been designed and fabricated. The second stage of the system provides a refrigeration power of similar to 250 mW at 5.0 K. The system uses stainless steel meshes (mesh size 200) along with lead (Pb) granules and combinations of Pb, Er3Ni, and HoCu2 as the first and second stage regenerator materials, respectively. Experimental studies have been carried out on different pulse tube configurations by varying the dimensions of the pulse tubes and regenerators to arrive at the best one, which leads to the lowest no-load second stage cold head temperature. Using this configuration, detailed experimental studies have been conducted by varying the volume percentage ratios of the second stage regenerator materials such as HoCu2, Er3Ni, and Pb (with an average grain size of similar to 250 mu m). This article presents the results of our experimental studies on cryocoolers with the regenerator material arranged in layered structures. Comparative studies have also been presented for specific cases where the regenerator materials are arranged as a homogeneous mixture in the second stage. The experimental results clearly indicate that the design of PTCs should use only layered structures of regenerator materials and not homogenous mixtures.
Resumo:
Cascaded multilevel inverters synthesize a medium-voltage output based on a series connection of power cells which use standard low-voltage component configurations. This characteristic allows one to achieve high-quality output voltages and input currents and also outstanding availability due to their intrinsic component redundancy. Due to these features, the cascaded multilevel inverter has been recognized as an important alternative in the medium-voltage inverter market. This paper presents a survey of different topologies, control strategies and modulation techniques used by these inverters. Regenerative and advanced topologies are also discussed. Applications where the mentioned features play a key role are shown. Finally, future developments are addressed.
Resumo:
Iron(II) complexes of 1-phenyl-2,3-dimethyl-5-pyrazolone (antipyrine, Apy) and pyridine N-oxide (PyO), having the formulae [Fe(Apy)6](ClO4)2, Fe(Apy)2Cl2, Fe(Apy)2Br2, Fe(Apy)4I2, [Fe(PyO)3Cl3]2 . 2H2O, [Fe(PyO)Cl2 . 2H2O]2, [Fe(PyO)3Br2]2 and [Fe(PyO)6]I2 have been prepared and characterized. [Fe(Apy)6](ClO4)2 in nitrobenzene and [Fe(PyO)6]I2 in acetonitrile behave as 1:2 electrolytes; Fe(Apy)4I2 shows considerable dissociation while Fe(Apy)2Cl2 and Fe(Apy)2Br2 are non-electrolytes and monomeric in nitrobenzene. [Fe(PyO)3Cl2]2 . 2H2O and [Fe(PyO)3Br2]2 in nitrobenzene and [Fe(PyO)Cl2 . 2H2O]2 in acetonitrile behave as non-electrolytes. All the complexes are spin-free. The i.r. spectra show that the oxygens of the CO and NO groups are the donors in the Apy and PyO complexes. A large decrease in the NO stretching frequency in [Fe(PyO)Cl2. 2H2O]2 suggests PyO acts as a bridge forming a binuclear complex. The chloro and the bromo complexes of Apy have been assigned pseudo tetrahedral structures while the rest of the complexes have octahedral or near octahedral configurations around the iron(II) on the basis of the magnetic moments and the electronic transitions.
Resumo:
Knowledge-based clusters are studied from the structural point of view. Generalized descriptions for such clusters are stated and illustrated. Peculiarities of certain knowledge-based cluster configurations are highlighted. The adequacy of the connectives logical and (“and”) logical or (“exclusive-or”) in describing such clusters is justified. The definition of “concept” is elaborated from the clustering point of view and used to establish the equivalence between, descriptions of clusters and concepts. The order-independence of semantic-directed clustering approach is established formally based on axiomatic considerations.
Resumo:
This paper describes an approach for the analysis and design of 765kV/400kV EHV transmission system which is a typical expansion in Indian power grid system, based on the analysis of steady state and transient over voltages. The approach for transmission system design is iterative in nature. The first step involves exhaustive power flow analysis, based on constraints such as right of way, power to be transmitted, power transfer capabilities of lines, existing interconnecting transformer capabilities etc. Acceptable bus voltage profiles and satisfactory equipment loadings during all foreseeable operating conditions for normal and contingency operation are the guiding criteria. Critical operating strategies are also evolved in this initial design phase. With the steady state over voltages obtained, comprehensive dynamic and transient studies are to be carried out including switching over voltages studies. This paper presents steady state and switching transient studies for alternative two typical configurations of 765kV/400 kV systems and the results are compared. Transient studies are carried out to obtain the peak values of 765 kV transmission systems and are compared with the alternative configurations of existing 400 kV systems.
Resumo:
This paper presents an Artificial Neural Network (ANN) approach for locating faults in distribution systems. Different from the traditional Fault Section Estimation methods, the proposed approach uses only limited measurements. Faults are located according to the impedances of their path using a Feed Forward Neural Networks (FFNN). Various practical situations in distribution systems, such as protective devices placed only at the substation, limited measurements available, various types of faults viz., three-phase, line (a, b, c) to ground, line to line (a-b, b-c, c-a) and line to line to ground (a-b-g, b-c-g, c-a-g) faults and a wide range of varying short circuit levels at substation, are considered for studies. A typical IEEE 34 bus practical distribution system with unbalanced loads and with three- and single- phase laterals and a 69 node test feeder with different configurations are considered for studies. The results presented show that the proposed approach of fault location gives close to accurate results in terms of the estimated fault location.
Resumo:
This paper presents results of triaxial compression tests on sand reinforced with different types of geosynthetics in different layer configurations to study the effect of quantity of reinforcement and tensile strength of the geosynthetic material on the mechanical behavior of geosynthetic-reinforced sand. The reinforcement types used are woven geotextile, geogrid, and polyester film. The layer configurations used are two, three, four, and eight horizontal reinforcing layers in a triaxial test sample. From the triaxial tests, it is found that the geosynthetic reinforcement imparts cohesive strength to otherwise cohesionless sand. The effect of reinforcement on the friction angle was found to be insignificant. The magnitude of imparted apparent cohesion is found to depend not only on the tensile strength of the geosynthetic material but also the surface roughness changes during loading. Special triaxial tests using rice flour as the reinforced medium, microscopic images, and surface roughness studies revealed the effect of indent formation on the surface of polyester film, which was the reason for the unusually high strength exhibited by the sand reinforced with polyester film.
Resumo:
Investigations of different superconducting (S)/ferromagnetic (F) heterostructures grown by pulsed laser deposition reveal that the activation energy (U) for the vortex motion in a high T-c superconductor is reduced remarkably by the presence of F layers. The U exhibits a logarithmic dependence on the applied magnetic field in the S/F bilayers suggesting the existence of decoupled two-dimensional (2D) pancake vortices. This result is discussed in terms of the reduction in the effective S layer thickness and the weakening of the S coherence length due to the presence of F layers. In addition, the U and the superconducting T-c in YBa2Cu3O7-delta/La0.5Sr0.5CoO3 bilayers are observed to be much lower than in the YBa2Cu3O7-delta/La0.7Sr0.3MnO3 ones. This in turn suggests that the degree of spin polarization of the F layer might not play a crucial role for the suppression of superconductivity due to a spin polarized induced pair-breaking effect in S/F bilayers.
Resumo:
We investigate the influence of viscoelastic nature of the adhesive on the intermittent peel front dynamics by extending a recently introduced model for peeling of an adhesive tape. As time and rate-dependent deformation of the adhesives are measured in stationary conditions, a crucial step in incorporating the viscoelastic effects applicable to unstable intermittent peel dynamics is the introduction of a dynamization scheme that eliminates the explicit time dependence in terms of dynamical variables. We find contrasting influences of viscoelastic contribution in different regions of tape mass, roller inertia, and pull velocity. As the model acoustic energy dissipated depends on the nature of the peel front and its dynamical evolution, the combined effect of the roller inertia and pull velocity makes the acoustic energy noisier for small tape mass and low-pull velocity while it is burstlike for low-tape mass, intermediate values of the roller inertia and high-pull velocity. The changes are quantified by calculating the largest Lyapunov exponent and analyzing the statistical distributions of the amplitudes and durations of the model acoustic energy signals. Both single and two stage power-law distributions are observed. Scaling relations between the exponents are derived which show that the exponents corresponding to large values of event sizes and durations are completely determined by those for small values. Th scaling relations are found to be satisfied in all cases studied. Interestingly, we find only five types of model acoustic emission signals among multitude of possibilities of the peel front configurations.
Resumo:
The asymmetric stress strain behavior under tension/compression in an initial < 100 > B-2-NiAl nanowire is investigated considering two different surface configurations i.e., < 100 >/(0 1 0) (0 0 1) and < 100 >/(0 1 1) (0 - 1 1). This behavior is attributed to two different deformation mechanisms namely a slip dominated deformation under compression and a known twinning dominated deformation under tension. It is also shown that B2 -> BCT (body-centered-tetragonal) phase transformation under tensile loading is independent of the surface configurations for an initial < 100 > oriented NiAl nanowire. Under tensile loading, the nanowire undergoes a stress-induced martensiticphase transformation from an initial B2 phase to BCT phase via twinning along {110} plane with failure strain of similar to 0.30. On the other hand, a compressive loading causes failure of these nanowires via brittle fracture after compressive yielding, with a maximum failure strain of similar to-0.12. Such brittle fracture under compressive loading occurs via slip along {110} plane without any phase transformations. Softening/hardening behavior is also reported for the first time in these nanowires under tensile/compressive loadings, which cause asymmetry in their yield strength behavior in the stress strain space. Result shows that a sharp increase in energy with increasing strain under compressive loading causes hardening of the nanowire, and hence, gives improved yield strength as compared to tensile loading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A photoemission study of superconducting Nd1.85Ce0.15CuO4-δ shows that Ce in the cuprate is essentially in the 4+ state. While the electron donated by Ce does not appear to affect the Cu 3d band, we still find evidence for the presence of considerable Cu1+ - related configurations due to covalency effects. A role for oxygen holes and Cu1+ species is indicated just as in other cuprate superconductors.
Resumo:
In this paper, direct numerical simulation of autoignition in an initially non-premixed medium under isotropic, homogeneous, and decaying turbulence is presented. The pressure-based method developed herein is a spectral implementation of the sequential steps followed in the predictor-corrector type of algorithms; it includes the effects of density fluctuations caused by spatial inhomogeneities ill temperature and species. The velocity and pressure field are solved in the spectral space while the scalars and density field are solved in the physical space. The presented results reveal that the autoignition spots originate and evolve at locations where (1) the composition corresponds to a small range around a specific mixture fraction, and (2) the conditional scaler dissipation rate is low. A careful examination of the data obtained indicates that the autoignition spots originate in the vortex cores, and the hot gases travel outward as combustion progresses. Hence, the applicability of the transient laminar flamelet model for this problem is questioned. The dependence of autoignition characteristics on parameters such as (1) die initial eddy-turnover time and (2) the initial ratio of length scale of scalars to that of velocities are investigated. Certain implications of new results on the conditional moment closure modeling are discussed.
Resumo:
The magnetic field induced broadening of the normal to superconducting resistive transition of YBa2Cu3O7−x thin films laser deposited on (100) MgO substrates for field oriented parallel to the c axis is found to be significantly reduced in comparison with that found previously in single crystals and in films deposited on SrTiO3. This reduction in broadening is associated with a high density of defects which, while causing a slight decrease in Tc and an increase in the zero‐field transition width, seems to provide strong vortex pinning centers that reduce flux creep