124 resultados para Vortex Shedding


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To improve the spatial distribution of nano particles in a polymeric host and to enhance the interfacial interaction with the host, the use of chain-end grafted nanoparticle has gained popularity in the field of polymeric nanocomposites. Besides changing the material properties of the host, these grafted nanoparticles strongly alter the dynamics of the polymer chain at both local and cooperative length scales (relaxations) by manipulating the enthalpic and entropic interactions. It is difficult to map the distribution of these chain-end grafted nanoparticles in the blend by conventional techniques, and herein, we attempted to characterize it by unique technique(s) like peak force quantitative nanomechanical mapping (PFQNM) through AFM (atomic force microscopy) imaging and dielectric relaxation spectroscopy (DRS). Such techniques, besides shedding light on the spatial distribution of the nanoparticles, also give critical information on the changing elasticity at smaller length scales and hierarchical polymer chain dynamics in the vicinity of the nanoparticles. The effect of one-dimensional rodlike multiwall carbon nanotubes (MWNTs), with the characteristic dimension of the order of the radius of gyration of the polymeric chain, on the phase miscibility and chain dynamics in a classical LCST mixture of polystyrene/ poly(vinyl methyl ether) (PS/PVME) was examined in detail using the above techniques. In order to tune the localization of the nanotubes, different molecular weights of PS (13, 31, and 46 kDa), synthesized using RAFT (reversible addition fragmentation chain transfer) polymerization, was grafted onto MWNTs in situ. The thermodynamic miscibility in the blends was assessed by low-amplitude isochronal temperature sweeps, the spatial distribution of MWNTs in the blends was evaluated by PFQNM, and the hierarchical polymer chain dynamics was studied by DRS. It was observed that the miscibility, concentration fluctuation, and cooperative relaxations of the PS/PVME blends are strongly governed by the spatial distribution of MWNTs in the blends. These findings should help guide theories and simulations of hierarchical chain dynamics in LCST mixtures containing rodlike nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a recently proposed Ginzburg-Landau-like lattice free energy functional due to Banerjee et al. (2011) we calculate the fluctuation diamagnetism of high -T-c superconductors as a function of doping, magnetic field and temperature. We analyse the pairing fluctuations above the superconducting transition temperature in the cuprates, ranging from the strong phase fluctuation dominated underdoped limit to the more conventional amplitude fluctuation dominated overdoped regime. We show that a model where the pairing scale increases and the superfluid density decreases with underdoping produces features of the observed magnetization in the pseudogap region, in good qualitative and reasonable quantitative agreement with the experimental data. In particular, we explicitly show that even when the pseudogap has a pairing origin the magnetization actually tracks the superconducting dome instead of the pseudogap temperature, as seen in experiment. We discuss the doping dependence of the `onset' temperature for fluctuation diamagnetism and comment on the role of vortex core -energy jn our model. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present experimental work reports the first observations of primary and secondary transitions in the time-averaged flame topology in a non-premixed swirling flame as the geometric swirl number S-G (a non dimensional number used to quantify the intensity of imparted swirl) is varied from a magnitude of zero till flame blowout. First observations of two transition types viz. primary and secondary transitions are reported. The primary transition represents a transformation from yellow straight jet flame (at S-G = 0) to lifted flame with blue base and finally to swirling seated (burner attached) yellow flame. Time-averaged streamline plot obtained from 2D PIV in mid-longitudinal plane shows a recirculation zone (RZ) at the immediate vicinity of burner exit. The lifted flame is stabilized along the vortex core of this RZ. Further, when S-G similar to 1.4-3, the first occurrence of vortex breakdown (VB) induced internal recirculation zone (IRZ) is witnessed. The flame now stabilizes at the upstream stagnation point of the VB-IRZ, which is attached to the burner lip. The secondary transition represents a transformation from a swirling seated flame to swirling flame with a conical tailpiece and finally to a highly-swirled near blowout oxidizer-rich flame. This transition is understood to be the result of transition in vortex breakdown modes of the swirling flow field from dual-ring VB bubble to central toroidal recirculation zone (CTRZ). The physics of transition is described on the basis of modified Rossby number (Ro(m)). Finally, when the swirl intensity is very high i.e. SG similar to 10, the flame blows out due to excessive straining and due to entrainment of large amount of oxidizer due to partial premixing. The present investigation involving changes in flame topology is immensely important because any change in global flame structure causes oscillatory heat release that can couple with dynamic pressure and velocity fluctuations leading to unsteady combustion. In this light, understanding mechanisms of flame stabilization is essential to tackle the problem of thermo-acoustic instability. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we present a numerical study of flow of shear thinning viscoelastic fluids in rectangular lid driven cavities for a wide range of aspect ratios (depth to width ratio) varying from 1/16 to 4. In particular, the effect of elasticity, inertia, model parameters and polymer concentration on flow features in rectangular driven cavity has been studied for two shear thinning viscoelastic fluids, namely, Giesekus and linear PTT. We perform numerical simulations using the symmetric square root representation of the conformation tensor to stabilize the numerical scheme against the high Weissenberg number problem. The variation in flow structures associated with merging and splitting of elongated vortices in shallow cavities and coalescence of corner eddies to yield a second primary vortex in deep cavities with respect to the variation in flow parameters is discussed. We discuss the effect of the dominant eigenvalues and the corresponding eigenvectors on the location of the primary eddy in the cavity. We also demonstrate, by performing numerical simulations for shallow and deep cavities, that where the Deborah number (based on convective time scale) characterizes the elastic behaviour of the fluid in deep cavities, Weissenberg number (based on shear rate) should be used for shallow cavities. (C) 2016 Elsevier B.V. All rights reserved.