157 resultados para Two-dimensional stress
Thermal Weight Functions and Stress Intensity Factors for Bonded Dissimilar Media Using Body Analogy
Resumo:
In this study, an analytical method is presented for the computation of thermal weight functions in two dimensional bi-material elastic bodies containing a crack at the interface and subjected to thermal loads using body analogy method. The thermal weight functions are derived for two problems of infinite bonded dissimilar media, one with a semi-infinite crack and the other with a finite crack along the interface. The derived thermal weight functions are shown to reduce to the already known expressions of thermal weight functions available in the literature for the respective homogeneous elastic body. Using these thermal weight functions, the stress intensity factors are computed for the above interface crack problems when subjected to an instantaneous heat source.
Resumo:
This work aims at dimensional reduction of non-linear isotropic hyperelastic plates in an asymptotically accurate manner. The problem is both geometrically and materially non-linear. The geometric non-linearity is handled by allowing for finite deformations and generalized warping while the material non-linearity is incorporated through hyperelastic material model. The development, based on the Variational Asymptotic Method (VAM) with moderate strains and very small thickness to shortest wavelength of the deformation along the plate reference surface as small parameters, begins with three-dimensional (3-D) non-linear elasticity and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a two-dimensional (2-D) plate analysis. Major contributions of this paper are derivation of closed-form analytical expressions for warping functions and stiffness coefficients and a set of recovery relations to express approximately the 3-D displacement, strain and stress fields. Consistent with the 2-D non-linear constitutive laws, 2-D plate theory and corresponding finite element program have been developed. Validation of present theory is carried out with a standard test case and the results match well. Distributions of 3-D results are provided for another test case. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Three new inorganic coordination polymers, {Mn(H2O)(6)]-Mn-2(H2O)(6)](Cu-6(mna)(6)]center dot 6H(2)O}, 1, {Mn-4(OH)(2)(H2O)(10)] (Cu-6(mna)6]center dot 8H(2)O}, 2, and {Mn-2(H2O)(5)]Ag-6(Hmna)(2)(mna)(4)]center dot 20H(2)O}, 3, have been synthesized at room temperature through a sequential crystallization route. In addition, we have also prepared and characterized the molecular precursor Cu-6(Hmna)(6)]. Compounds 1 and 3 have a two-dimensional structure, whereas 2 has a three-dimensional structure. The formation of 2 has been achieved by minor modification in the synthetic composition, suggesting the subtle relationship between the reactant composition and the structure. The hexanudear copper and silver duster cores have Cu center dot center dot center dot Cu and Ag center dot center dot center dot Ag distances close to the sum of the van der Waals radii of Cu1+ and Ag1+, respectively. The connectivity between Cu-6(mna)(6)](6-) cluster units and Mn2+ ions gives rise to a brucite related layer in 1 and a pcu-net in 2. The Ag-6(Hmna)(2)(mna)(4)](4-) cluster in 3, on the other hand, forms a sql-net with Mn2+. Compound 1 exhibits an interesting and reversible hydrochromic behavior, changing from pale yellow to red, on heating at 70 degrees C or treatment under a vacuum. Electron paramagnetic resonance studies indicate no change in the valence states, suggesting the color change could be due to changes in the coordination environment only. The magnetic studies indicate weak antiferromagnetic behavior. Proton conductivity studies indicate moderate proton migrations in 1 and 3. The present study dearly establishes sequential crystallization as an important pathway for the synthesis of heterometallic coordination polymers.
Resumo:
Tethered satellites deployed from the Space Shuttle have been proposed for diverse applications. A funda- mental issue in the utilization of tethers is quick deployment and retrieval of the attached payload. Inordinate librations of the tether during deployment and retrieval is undesirable. The structural damping present in the system is too low to contain the librations. Rupp [1] proposed to control the tether reel located in the parent spacecraft to alter the tension in the tether, which in turn changes the stiffness and the damping of the system. Baker[2] applied the tension control law to a model which included out of plane motion. Modi et al.[3] proposed a control law that included nonlinear feedback of the out-of plane tether angular rate. More recently, nonlinear feedback control laws based on Liapunov functions have been proposed. Two control laws are derived in [4]. The first is based on partial decomposition of the equations of motion and utilization of a two dimensional control law developed in [5]. The other is based on a Liapunov function that takes into consideration out-of-plane motion. It is shown[4] that the control laws are effective when used in conjunction with out-of-plane thrusting. Fujii et al.,[6] used the mission function control approach to study the control law including aerodynamic drag effect explicitly into the control algorithm.
Resumo:
In the present study a two dimensional model is first developed to show the behaviour of dense non-aqueous phase liquids (DNAPL) within a rough fracture. To consider the rough fracture, the fracture is imposed with variable apertures along its plane. It is found that DNAPL follows preferential pathways. In next part of the study the above model is further extended for non-isothermal DNAPL flow and DNAPL-water interphase mass transfer phenomenon. These two models are then coupled with joint deformation due to normal stresses. The primary focus of these models is specifically to elucidate the influence of joint alteration due to external stress and fluid pressures on flow driven energy transport and interphase mass transfer. For this, it is assumed that the critical value for joint alteration is associated with external stress and average of water and DNAPL pressures in multiphase system and the temporal and spatial evolution of joint alteration are determined for its further influence on energy transport and miscible phase transfer. The developed model has been studied to show the influence of deformation on DNAPL flow. Further this preliminary study demonstrates the influence of joint deformation on heat transport and phase miscibility via multiphase flow velocities. It is seen that the temperature profile changes and shows higher diffusivity due to deformation and although the interphase miscibility value decreases but the lateral dispersion increases to a considerably higher extent.
Resumo:
Quasi-two-dimensional oxides of the La,+,Sr,+,Mn04 system, possessing the KZNiF4 structure, show no evidence for ferromagnetic ordering in contrast to the corresponding three-dimensional La,+.Sr,MnO~ perovskites. Instead, there is an increasing tendency toward antiferromagnetic ordering with mcreasmg x m La,+,Sr,,, MnOp. Furthermore, these oxides are relatively high-resistivity materials over the entire compositional range. Substitution of Ba for Sr in La&r,.5Mn04 decreases the ferromagnetic interaction. Increasing the number of perovskite layers in SrO (La,-,Sr,MnO& causes an increase in electrical conductivity as well as ferromagnetic interaction. The oxide becomes a highly conducting ferromagnet when n 2 2.
Resumo:
Joints are primary sources of weakness in structures. Pin joints are very common and are used where periodic disassembly of components is needed. A circular pin in a circular hole in an infinitely large plate is an abstraction of such a pin joint. A two-dimensional plane-stress analysis of such a configuration is carried out, here, subjected to pin-bearing and/or biaxial-plate loading. The pin is assumed to be rigid compared to the plate material. For pin load the reactive stresses at the edges of the infinite plate tend to zero though their integral over the external boundary equals to the pin load. The pin-hole interface is unbonded and so beyond some load levels the plate separates from the pin and the extent of separation is a non-linear function of load level. The problem is solved by inverse technique where the extent of contact is specified and the causative loads are evaluated directly. In the situations where combined load is acting the separation-contact zone specification generally needs two parameters (angles) to be specified. The present report deals with analysing such a situation in metallic (or isotropic) plates. Numerical results are provided for parametric representation and the methodology is demonstrated.
Resumo:
A special finite element (FASNEL) is developed for the analysis of a neat or misfit fastener in a two-dimensional metallic/composite (orthotropic) plate subjected to biaxial loading. The misfit fasteners could be of interference or clearance type. These fasteners, which are common in engineering structures, cause stress concentrations and are potential sources of failure. Such cases of stress concentration present considerable numerical problems for analysis with conventional finite elements. In FASNEL the shape functions for displacements are derived from series stress function solutions satisfying the governing difffferential equation of the plate and some of the boundary conditions on the hole boundary. The region of the plate outside FASNEL is filled with CST or quadrilateral elements. When a plate with a fastener is gradually loaded the fastener-plate interface exhibits a state of partial contact/separation above a certain load level. In misfit fastener, the extent of contact/separation changes with applied load, leading to a nonlinear moving boundary problem and this is handled by FASNEL using an inverse formulation. The analysis is developed at present for a filled hole in a finite elastic plate providing two axes of symmetry. Numerical studies are conducted on a smooth rigid fastener in a finite elastic plate subjected to uniaxial loading to demonstrate the capability of FASNEL.
Resumo:
A generalization of the isotropic theory of Batchelor & Proudman (1954) is developed to estimate the effect of sudden but arbitrary three-dimensional distortion on homogeneous, initially axisymmetric turbulence. The energy changes due to distortion are expressed in terms of the Fourier coefficients of an expansion in zonal harmonics of the two independent scalar functions that describe the axisymmetric spectral tensor. However, for two special but non-trivial forms of this tensor, which represent possibly the simplest kinds of non-isotropic turbulence and specify the angular distribution but not the wavenumber dependence, the energy ratios have been determined in closed form. The deviation of the ratio from its isotropic value is the product of a factor containing R, the initial value of the ratio of the longitudinal to the transverse energy component, and another factor depending only on the geometry of the distortion. It is found that, in axisymmetric and large two-dimensional contractions, the isotropic theory gives nearly the correct longitudinal energy, but (when R > 1) over-estimates the increase in the transverse energy; the product of the two intensities varies little unless the distortion is very large, thus accounting for the stress-freezing observed in rapidly accelerated shear flows.Comparisons with available experimental data for the spectra and for the energy ratios show reasonable agreement. The different ansatzes predict results in broad qualitative agreement with a simple strategem suggested by Reynolds & Tucker (1975), but the quantitative differences are not always negligible.
Resumo:
A numerical method is suggested for separation of stresses in photo-orthotropic elasticity using the numerical solution of compatibility equation for orthotropic case. The compatibility equation is written in terms of a stress parameter S analogous to the sum of principal stresses in two-dimensional isotropic case. The solution of this equation provides a relation between the normal stresses. The photoelastic data give the shear stress and another relation between the two normal stresses. The accuracy of the numerical method and its application to practical problems are illustrated with examples.
Resumo:
By using the method of operators of multiple scales, two coupled nonlinear equations are derived, which govern the slow amplitude modulation of surface gravity waves in two space dimensions. The equations of Davey and Stewartson, which also govern the two-dimensional modulation of the amplitude of gravity waves, are derived as a special case of our equations. For a fully dispersed wave, symmetric about a point which moves with the group velocity, the coupled equations reduce to a nonlinear Schrödinger equation with extra terms representing the effect of the curvature of the wavefront.
Resumo:
Purpose - The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity. Design/methodology/approach - The second-order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier-Stokes (NS) equations and with available experimental data. Findings - The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low. Reynolds numbers, but become quite strong at high Reynolds numbers. Originality/value - The findings will be useful in the study of variety of enclosed fluid flows.
Resumo:
Three-dimensional achiral coordination polymers of the general formula M2(D, l-NHCH (COO)CH2COO)2·C4H4N2 where M = Ni and Co and pyrazine acts as the linker molecule have been prepared under hydrothermal conditions starting with [M(L-NHCH(COO)CH2COO)·3H2O] possessing a helical chain structure. A three-dimensional hybrid compound of the formula Pb2.5[N{CH(COO) CH2COO}22H2O] has also been prepared hydrothermally starting with aspartic acid and Pb(NO3)2. In this lead compound, where a secondary amine formed by the dimerisation of aspartic acid acts as the ligand, there is two-dimensional inorganic connectivity and one-dimensional organic connectivity.
Resumo:
In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.
Resumo:
A three dimensional elasticity solution for the analysis of beams continuous over an infinite number of equally spaced supports has been given. The beam has been subjected to normal tractions on its two opposite faces and these loads are identical over each span. The other two faces are traction free. Numerical results have been given for different cases when the beam is loaded on its bottom face. The results obtained have been compared with the results of two dimensional elasticity solution.