130 resultados para Synthetic hydroxyapatite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports the impact of sintering conditions on the phase stability in hydroxyapatite (HA) magnetite (Fe3O4) bulk composites, which were densified using either pressureless sintering in air or by rapid densification via hot pressing in inert atmosphere. In particular, the phase abundances, structural and magnetic properties of the (1-x)HA-xFe(3)O(4) (x = 5, 10, 20, and 40 wt %) composites were quantified by corroborating results obtained from Rietveld refinement of the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. Post heat treatment phase analysis revealed a major retention of Fe3O4 in argon atmosphere, while it was partially/completely oxidized to hematite (alpha-Fe2O3) in air. Mossbauer results suggest the high-temperature diffusion of Fe3+ into hydroxyapatite lattice, leading to the formation of Fe-doped HA. A preferential occupancy of Fe3+ at the Ca(1) and Ca(2) sites under hot-pressing and conventional sintering conditions, respectively, was observed. The lattice expansion in HA from Rietveld analysis correlated well with the amounts of Fe-doped HA determined from the Mossbauer spectra. Furthermore, hydroxyapatite in the monoliths and composites was delineated to exist in the monoclinic (P2(1)/b) structure as against the widely reported hexagonal (P6(3)/m) crystal lattice. The compositional similarity of iron doping in hydroxyapatite to that of tooth enamel and bone presents HA-Fe3O4 composites as potential orthopedic and dental implant materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rechargeable batteries based on Li and Na ions have been growing leaps and bounds since their inception in the 1970s. They enjoy significant attention from both the fundamental science point of view and practical applications ranging from portable electronics to hybrid vehicles and grid storage. The steady demand for building better batteries calls for discovery, optimisation and implementation of novel positive insertion (cathode) materials. In this quest, chemists have tried to unravel many future cathode materials by taking into consideration their eco-friendly synthesis, material/process economy, high energy density, safety, easy handling and sustainability. Interestingly, sulfate-based cathodes offer a good combination of sustainable syntheses and high energy density owing to their high-voltage operation, stemming from electronegative SO42- units. This review delivers a sneak peak at the recent advances in the discovery and development of sulfate-containing cathode materials by focusing on their synthesis, crystal structure and electrochemical performance. Several family of cathodes are independently discussed. They are 1) fluorosulfates AMSO(4)F], 2) bihydrated fluorosulfates AMSO(4)F2H(2)O], 3) hydroxysulfate AMSO(4)OH], 4) bisulfates A(2)M(SO4)(2)], 5) hydrated bisulfates A(2)M(SO4)(2)nH(2)O], 6) oxysulfates Fe-2(SO4)(2)O] and 7) polysulfates A(2)M(2)(SO4)(3)]. A comparative study of these sulfate-based cathodes has been provided to offer an outlook on the future development of high-voltage polyanionic cathode materials for next-generation batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a super resolution (SR) method for synthetic images using FeatureMatch. Existing state-of-the-art super resolution methods are learning based methods, where a pair of low-resolution and high-resolution dictionary pair are trained, and this trained pair is used to replace patches in low-resolution image with appropriate matching patches from the high-resolution dictionary. In this paper, we show that by using Approximate Nearest Neighbour Fields (ANNF), and a common source image, we can by-pass the learning phase, and use a single image for dictionary. Thus, reducing the dictionary from a collection obtained from hundreds of training images, to a single image. We show that by modifying the latest developments in ANNF computation, to suit super resolution, we can perform much faster and more accurate SR than existing techniques. To establish this claim we will compare our algorithm against various state-of-the-art algorithms, and show that we are able to achieve better and faster reconstruction without any training phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal atom (Co) substituted synthetic tetrahedrite compounds Cu12-xCoxSb4S13 (x = 0, 0.5, 1.0, 1.5, 2.0) were prepared by solid state synthesis. X-Ray Diffraction (XRD) patterns revealed tetrahedrite as the main phase, whereas for the compounds with x = 0, 0.5 a trace of impurity phase Cu3SbS4 was observed. The surface morphology showed a large grain size with low porosity, which indicated appropriate compaction for the hot pressed samples. The phase purity, as monitored by Electron Probe Micro Analysis (EPMA) is in good agreement with the XRD data. The elemental composition for all the compounds almost matched with the nominal composition. The X-ray Photoelectron Spectroscopy (XPS) data showed that Cu existed in both +1 and +2 states, while Sb exhibited +3 oxidation states. Elastic modulus and hardness showed a systematic variation with increasing Co content. The electrical resistivity and Seebeck coefficient increased with increase in the doping content due to the decrease in the number of carriers caused by the substitution of Co2+ on the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. A combined effect of resistivity and Seebeck coefficient leads to the maximum power factor of 1.76 mW m(-1) K-2 at 673 K for Cu11.5Co0.5Sb4S13. This could be due to the optimization in the carrier concentration by the partial substitution of Co2+ on both the Cu1+ as well as Cu2+ site at the same doping levels, which is also supported by the XPS data. The total thermal conductivity systematically decreased with increase of doping content as it is mainly influenced by the decrease of carrier thermal conductivity. The maximum thermoelectric figure of merit zT = 0.98 was obtained at 673 K for Cu11.5Co0.5Sb4S13. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study a versatile and efficient adsorbent with high adsorption capacity for adsorption of Congo red dye in aqueous solution at ambient temperature without adjusting any pH is presented over the Ag modified calcium hydroxyapatite (CaHAp). CaHAp and Ag-doped CaHAp materials were synthesized using facile aqueous precipitation method. The physico-chemical properties of the materials were determined by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Transmission electron microscopy (TEM), UV-Visible spectroscopy, N-2 physisorption and acidity was determined by n-butylamine titration and pyridine adsorption methods. XRD analysis confirmed all adsorbents exhibit hexagonal CaHAp structure with P6(3)/m space group. TEM analysis confirms the rod like morphology of the adsorbents and the average length of the rods were in the range of 40-45 nm. Pyridine adsorption results indicate increase in number of Lewis acid sites with Ag doping in CaHAp. Adsorption capacity of CaHAp was found increased with Ag content in the adsorbents. Ag (10): CaHAp adsorbent showed superior adsorption performance among all the adsorbents for various concentrations of Congo red (CR) dye in aqueous solutions. The amount of CR dye adsorbed on Ag (10): CaHAp was found to be 49.89-267.81 mg g(-1) for 50-300 ppm in aqueous solution. A good correlation between adsorption capacity and acidity of the adsorbents was observed. The adsorption kinetic data of adsorbents fitted well with pseudo second-order kinetic model with correlation coefficients ranged from 0.998 to 0.999. The equilibrium adsorption data was found to best fit to the Langmuir adsorption isotherm model. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ``synthetic dimension'' proposal A. Celi et al., Phys. Rev. Lett. 112, 043001 (2014)] uses atoms with M internal states (''flavors'') in a one-dimensional (1D) optical lattice, to realize a hopping Hamiltonian equivalent to the Hofstadter model (tight-binding model with a given magnetic flux per plaquette) on an M-sites-wide square lattice strip. We investigate the physics of SU(M) symmetric interactions in the synthetic dimension system. We show that this system is equivalent to particles with SU(M) symmetric interactions] experiencing an SU(M) Zeeman field at each lattice site and a non-Abelian SU(M) gauge potential that affects their hopping. This equivalence brings out the possibility of generating nonlocal interactions between particles at different sites of the optical lattice. In addition, the gauge field induces a flavor-orbital coupling, which mitigates the ``baryon breaking'' effect of the Zeeman field. For M particles, concomitantly, the SU(M) singlet baryon which is site localized in the usual 1D optical lattice, is deformed to a nonlocal object (''squished baryon''). We conclusively demonstrate this effect by analytical arguments and exact (numerical) diagonalization studies. Our study promises a rich many-body phase diagram for this system. It also uncovers the possibility of using the synthetic dimension system to laboratory realize condensed-matter models such as the SU(M) random flux model, inconceivable in conventional experimental systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite being highly bioactive and biocompatible, the limitations of monolithic hydroxyapatite (HA) include extremely low fracture toughness, poor electrical conductivity. While addressing these issues, the present study demonstrates how CaTiO3 (CT) addition to HA can be utilized to obtain a combination of long crack fracture toughness (1.7 MPa m(1/2) SEVNB technique) and flexural strength of 98-155 MPa (3-point bending) and a moderate tensile strength (diametral compression) of 17-36 MPa. The enhancement in fracture resistance in spark plasma sintered HA-CT composites has been explained in reference to the observed twin morphology. TEM reveals the presence of twins in CT grains due to 1800 rotation about 101]. The measured properties along with our earlier reports on biocompatibility and electrical properties make HA-CT suitable for bone tissue engineering applications. When compared with other competing HA-based biocomposites, HA-CT composites are found to have a better combination of properties useful for medium load bearing implant applications. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synthetic strategy is outlined whereby a binary cocrystal may be developed in turn into a ternary and finally into a quaternary cocrystal. The strategy hinges on the concept of the long-range synthon Aufbau module (LSAM) which is a large supramolecular synthon containing more than one type of intermolecular interaction. Modulation of these interactions may be possible with the use of additional molecular components so that higher level cocrystals are produced. We report six quaternary cocrystals here. All are obtained as nearly exclusive crystallization products when four appropriate solid compounds are taken together in solution for crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaffolds for bone tissue engineering are essentially characterized by porous three-dimensional structures with interconnected pores to facilitate the exchange of nutrients and removal of waste products from cells, thereby promoting cell proliferation in such engineered scaffolds. Although hydroxyapatite is widely being considered for bone tissue engineering applications due to its occurrence in the natural extracellular matrix of this tissue, limited reports are available on additive manufacturing of hydroxyapatite-based materials. In this perspective, hydroxyapatite-based three-dimensional porous scaffolds with two different binders (maltodextrin and sodium alginate) were fabricated using the extrusion method of three-dimensional plotting and the results were compared in reference to the structural properties of scaffolds processed via chemical stabilization and sintering routes, respectively. With the optimal processing conditions regarding to pH and viscosity of binder-loaded hydroxyapatite pastes, scaffolds with parallelepiped porous architecture having up to 74% porosity were fabricated. Interestingly, sintering of the as-plotted hydroxyapatite-sodium alginate (cross-linked with CaCl2 solution) scaffolds led to the formation of chlorapatite (Ca9.54P5.98O23.8Cl1.60(OH)(2.74)). Both the sintered scaffolds displayed progressive deformation and delayed fracture under compressive loading, with hydroxyapatite-alginate scaffolds exhibiting a higher compressive strength (9.5 +/- 0.5MPa) than hydroxyapatite-maltodextrin scaffolds (7.0 +/- 0.6MPa). The difference in properties is explained in terms of the phase assemblage and microstructure.