349 resultados para Substituted Phenols
Resumo:
This study presents a plausible dual-site mechanism and microkinetic model for CO oxidation over palladium-substituted ceria incorporating the theoretical oxygen storage capacity of different-catalysts into the kinetic model. A rate expression without prior assumption of rate-determining steps has been developed for the proposed microkinetic model using reaction route analysis. Experiments were conducted using various percentages of palladium in ceria that were synthesized by solution combustion. Obtained catalysts were characterized by X-ray diffraction, X-ray photoelectron spectra, and Brunauer-Emmett-Teller surface area measurements. A detailed mechanism was, developed, and the kinetic parameters and rate expression were validated with the conversion data obtained in the presence of the catalysts. Furthermore, a reduced rate expression based on rate-determining step and most abundant reactive intermediate approximation was obtained and tested against the original rate expression for different experimental conditions. From the results obtained it was concluded that the simulated rate predictions matched the experimental trend with reasonable accuracy, validating the kinetic parameters proposed it this study.
Resumo:
Oxidation of mu-H/alkylbisnaphthols (4a-g) gives the 14-substituted dibenzo[aj]xanthenes (5a-g) as the sole product while that of mu-arylbisnaphthols (4h-j) gives the xanthenes (5h-j) along with the corresponding spironaphthalenones (1h-j). A probable mechanism for the formation of the products has been suggested.
Resumo:
Selective introduction and removal of protecting groups is of great significance in organic synthesis.l The benzyl ether function is one of the most common protecting groups for alcohols. Selective oxidative removal of the 4-methoxybenzyl (MPM) ethers in the presence of benzyl ethers made the MPM moiety an alternative protecting group, and its utility in carbohydrate chemistry is well established. Several procedures have been developed for the cleavage of the 4-methoxybenzyl moiety, e.g. DDQ oxidation (eq 1),2e lectrochemical ~xidationh,~om ogeneous electron t r a n~f e rp,~ho toinduced single electron t r an~f e rb,o~ro n trichloride-dimethyl sulfide,6e tc. However, in all these methods isolation of the alcohol from the inevitable byproduct, 4-methoxybenzaldehyde [also dichlorodicyanohydroquinone (DDHQ) in the most commonly used method employing DDQI can be troublesome. Recently Wallace and Hedgetts7 discovered that acetic acid at 90 "C cleaves the aromatic MPM ethers into the corresponding phenols and 4-methoxybenzyl acetate (eq 21, whereas the aliphatic MPM ethers generated, instead of alcohols, the corresponding acetates (eq 3). Complimentary to this methodology, herein we report that sodium cyanoborohydride and boron trifluoride etherate reductively cleaves, cleanly and efficiently, the aliphatic MPM ethers to an easily separable mixture of the corresponding alcohols and 4-methylanisole
Resumo:
Quinones and their radical ion intermediates have been much studied by vibrational spectroscopy to understand their structure-function relationships in various biological processes. In this paper, we present a comprehensive analysis of vibrational spectra in the structure-sensitive region of both the naphthoquinone (NQ) and 2-methyl-1,4-naphthoquinone (MQ, menaquinone) radical anions using time-resolved resonance Raman and ab initio studies. Specific vibrational mode assignments have been made to all the vibrational frequencies recorded in the experiment. It is observed that the carbonyl and C-C stretching frequencies show considerable coupling in NQ and MQ radical anions. Further, the asymmetric substitution present in MQ with respect to NQ shows important signatures in the radical anion spectrum. It is concluded that assignments of vibrational frequencies of asymmetrically substituted quinones must take into consideration the influence of asymmetry on structure and reactivity.
Resumo:
The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).
Resumo:
MeNCS undergoes insertion into the copper(I)-aryloxide bond to form [N-methylimino(aryloxy)methanethiolato]-copper(I) complexes. This insertion occurs in the absence of ancillary ligands unlike the analogous insertion of PhNCS. The reaction with 4-methylphenoxide results in the formation of hexakis[[N-methylimino(4-methylphenoxy) methanethiolato]copper(I)] (1), which has been characterized by X-ray crystallography. Crystal data for 1: hexagonal , a = 10.088(2) Angstrom, b = 11.302(1) Angstrom, c = 17.990(2) Angstrom, alpha = 94.06(1)degrees, beta = 95.22(2)degrees, gamma = 103.94(1)degrees, Z = 2, V = 1974.4(7) Angstrom(3), R = 0.0361. In the presence of of PPh(3), the insertion reaction becomes reversible. This allows the exchange of the heterocumulene MeNCS or the aryloxy group in these molecules with another heterocumulene or a phenol, respectively, when catalytic amounts of PPh(3) are added. Oligomers with exchanged heterocumulmes and phenols could be characterized by independent synthesis.
Resumo:
The application of radical-mediated cyclizations and annulations in organic synthesis has grown in importance steadily over the years to reach the present status where they are now routinely used in the strategy-level planning.2 The presence of a quaternary carbon atom is frequently encountered in terpenoid natural products, and it often creates a synthetic challenge when two or more quaternary carbon atoms are present in a contiguous manner.3 Even though creation of a quaternary carbon atom by employing a tertiary radical is very facile, creation of a quaternary carbon atom (or a spiro carbon atom) via radical addition onto a fully substituted olefinic carbon atom is not that common but of synthetic importance. For example, the primary radical derived from the bromide 1 failed to cyclize to generate the two vicinal quaternary carbon atoms and resulted in only the reduced product 2.4 The tricyclic carbon framework tricyclo[6.2.1.01,5]undecane (3) is present in a number of sesquiterpenoids e.g. zizzanes, prelacinanes, etc.5
Resumo:
Ce1-xSnxO2 (x = 0.1-0.5) solid solution and its Pd substituted analogue have been prepared by a single step solution combustion method using tin oxalate precursor. The compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H-2/temperature programmed redution (TPR) studies. The cubic fluorite structure remained intact up to 50% of Sri substitution in CeO2, and the compounds were stable up to 700 C. Oxygen storage capacity of Ce1-xSnxO2 was found to be much higher than that of Ce1-xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 and 400 C. Pd 21 ions in Ce0.78Sn0.2Pd0.02O2-delta are highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 mu mol g(-1) s(-1) at 50 degrees C. NO reduction by CO with 70% N-2 selectivity was observed at similar to 200 degrees C and 100% N-2 selectivity below 260 degrees C with 1000-5000 ppm NO. Thus, Pd2+ ion substituted Ce1-xSnxO2 is a superior catalyst compared to Pd2+ ions in CeO2, Ce1-xZrxO2, and Ce1-xTixO2 for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd-0 and Ce4+/Ce3+ couples.
Resumo:
In order to explore the anticancer effect associated with the thiazolidinone framework, several 2-(5-((5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid derivatives 5(a-1) were synthesized. Variation in the functional group at C-terminal of the thiazolidinone led to set of compounds bearing amide moiety. Their chemical structures were confirmed by H-1 NMR, IR and Mass Spectra analysis. These thiazolidinone compounds containing furan moiety exhibits moderate to strong antiproliferative activity in a cell cycle stage-dependent and dose dependent manner in two different human leukemia cell lines. The importance of the electron donating groups on thiazolidinone moiety was confirmed by MTT and Trypan blue assays and it was concluded that the 4th position of the substituted aryl ring plays a dominant role for its anticancer property. Among the synthesized compounds, 5e and 5f have shown potent anticancer activity on both the cell lines tested. To rationalize the role of electron donating group in the induction of cytotoxicity we have chosen two molecules (5e and 5k) having different electron donating group at different positions. LDH assay, Flow cytometric analysis and DNA fragmentation suggest that 5e is more cytotoxic and able to induce the apoptosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pt ions-CeO2 interaction in Ce1-xPtxO2-delta (x=0.02) has been studied for the first time by electrochemical method combined with x-ray diffraction and x-ray photoelectron spectroscopy. Working electrodes made of CeO2 and Ce0.98Pt0.02O2-delta mixed with 30% carbon are treated electrochemically between 0.0-1.2 V in potentiostatic (chronoamperometry) and potentiodynamic (cyclic voltametry) mode with reference to saturated calomel electrode. Reversible oxidation of Pt-0 to Pt2+ and Pt4+ state due to the applied positive potential is coupled to simultaneous reversible reduction of Ce4+ to Ce3+ state. CeO2 reduces to CeO2-y (y=0.35) after applying 1.2 V, which is not reversible; Ce0.98Pt0.02O2-delta reaches a steady state with Pt2+:Pt4+ in the ratio of 0.60:0.40 and Ce4+:Ce3+ in the ratio of 0.55:0.45 giving a composition Ce0.98Pt0.02O1.74 at 1.2 V, which is reversible. Composition of Pt ion substituted compound is reversible between Ce0.98Pt0.02O1.95 to Ce0.98Pt0.02O1.74 within the potential range of 0.0-1.2 V. Thus, Ce0.98Pt0.02O2-delta forms a stable electrode for oxidation of H2O to O-2 unlike CeO2. A linear relation between oxidation of Pt2+ to Pt4+ with simultaneous reduction in Ce4+ to Ce3+ is observed demonstrating Pt-CeO2 metal support interaction is due to reversible Pt-0/Pt2+/Pt4+ interaction with Ce4+/Ce3+ redox couple.
Resumo:
The role of a charge buffer layer in the superconductivity of high-T-c materials is best studied by cationic substitutions. In this work, the chain copper in YBCO single crystals is substituted by Co3+ ion and consequent effect on superconducting transition temperature (T-c) studied. The T-c is measured using non-resonant Microwave Absorption technique, which is a highly sensitive and contactless method. It is seen that T-c of as-grown crystals is considerably enhanced by cobalt doping in low concentration regime. In contrast, higher T-c is achieved in undoped crystals only after extended oxygen anneal. When dopant concentration increases beyond an optimal value, T-c decreases and the system does not show superconductivity when cobalt content is high (x > 0.5 in YBa2Cu3-xCOxO7+/-delta). This behaviour consequent to cobalt substitution is discussed with reference to the apical oxygen model. Optimal cobalt doping can be thought of as an alternative to extended oxygen anneal in as-grown crystals of YBCO.
Resumo:
A series of bimetallic acetylacetonate (acac) complexes, AlxCr1-x(acac)(3), 0 <= x <= 1, have been synthesized for application as precursors for the CVD Of Substituted oxides, such as (AlxCr1-x)(2)O-3. Detailed thermal analysis has been carried out on these complexes, which are solids that begin subliming at low temperatures, followed by melting, and evaporation from the melt. By applying the Langmuir equation to differential thermogravimetry data, the vapour pressure of these complexes is estimated. From these vapour pressure data, the distinctly different enthalpies of sublimation and evaporation are calculated, using the Clausius-Clapeyron equation. Such a determination of both the enthalpies of sublimation and evaporation of complexes, which sublime and melt congruently, does not appear to have been reported in the literature to date.
Resumo:
Birch reductio and reductive methylations of some substituted naphtholic acids have been examined. The factors influencing the mechanism of reduction process have been discussed. Some of the reduced naphthoic acids are useful synthons for synthesis.
Resumo:
The calcium binding characteristics of antibiotic X-537A (lasalocid-A) in a lipophilic solvent, acetonitrile (CH3CN), have been studied using circular dichroism (CD) spectroscopy. The analysis of the data indicated that in this medium polar solvent, X-537A forms predominantly the charged complexes of stoichiometries 2:1 and 1:1, the relative amounts of the two being dependent on [Ca2+]. The conformation of the complexes, arrived at on the basis of the data, seem to indicate a rigid part encompassing Ca2+, liganded to 3 oxygens of the molecule, viz., the carbonyl, the substituted tetrahydrofuran ring and the substituted pyran ring oxygens (apart from possibly, the liganding provided by nitrogen atoms of the solvent molecules), and a flexible part consisting of the salicylic acid group of the molecule.
Resumo:
A series of secondary and tertiary amide-substituted diselenides were synthesized and studied for their GPx-like antioxidant activities using H2O2 Cum-OOH, and tBuOOH as substrates and PhSH as thiol co-substrate.The effect of substitution at the free -NH group of the amide moiety in the sec-amide-based diselenides on GPx activity was analyzed by detailed experimental and theoretical methods. It is observed that substitution at the free -NH group significantly enhances the GPx-like activities of the sec-amide-based diselenides, mainly by reducing the Se center dot center dot center dot O nonbonded interactions. The reduction in strength of the Se center dot center dot center dot O interaction upon introduction of N,N-dialkyl substituents not only prevents the undesired thiol exchange reactions, but also reduces the stability of selenenyl sulfide intermediates. This leads to a facile disproportionation of the selenenyl sulfide to the corresponding diselenide, which enhances the catalytic activity. The mechanistic investigations indicate that the reactivity of diselenides having sec-or tert-amide moieties with PhSH is extremely slow; indicating that the first step of the catalytic cycle involves the reaction between the diselenides and peroxide to produce the corresponding selenenic and seleninic acids.