234 resultados para Stratosphere interactions
Resumo:
Sliding of alumina (87%) pins against a hardened steel disk over a range of pressures (3.3-30.0 MPa) and speeds (0.1-12.0 ms(-1)) has been studied. Four different regions (R1, R2, R3, and R4) of friction as a function of speed have been identified. R1 and RS exhibit single-valued friction while in R2 and R4 the friction exhibits dual behavior. The speed range over which these regions prevail is sensitive to the pressure. R1 and R2 are low-speed and low-temperature regions, and in both, metal transfer and formation and compaction of gamma-Fe2O3 occur. R3 and R4 are associated with high speeds and high interface temperatures. Formation of FeO, FeAl2O4, and FeAlO3 has been observed. The implications of the tribochemical interactions on friction and wear characteristics are discussed.
Resumo:
We calculate analytically the average number of fixed points in the Hopfield model of associative memory when a random antisymmetric part is added to the otherwise symmetric synaptic matrix. Addition of the antisymmetric part causes an exponential decrease in the total number of fixed points. If the relative strength of the antisymmetric component is small, then its presence does not cause any substantial degradation of the quality of retrieval when the memory loading level is low. We also present results of numerical simulations which provide qualitative (as well as quantitative for some aspects) confirmation of the predictions of the analytic study. Our numerical results suggest that the analytic calculation of the average number of fixed points yields the correct value for the typical number of fixed points.
Resumo:
The antiparallel intramolecular G quartet structure for the 3.5 copy Oxytricha telomeric sequence d(G(4)T(4))(3)G4 has been established using a combination of spectroscopic and chemical probing methods. In the presence of Naf ions, this sequence exhibits a circular dichroism spectrum with a positive band at 295 nm and a negative band around 265 nm, characteristic of an antiparallel G quartet structure. Further, we show that d(G(4)T(4))(3)G(4) adopts an antiparallel intramolecular G quartet structure even in K+ unlike d(G(4)T(4)G(4)). KMnO4 probing experiments indicated the existence of intra and interloop interactions in the Na+ induced structure. We have found that K+ not only increases the thermal stability of,G quartet structure but also binds to the loop region and disrupts stacking and interloop interactions. Biological consequences of such cation-dependent conformational micro-heterogeneity in the loop region of G quartet structures is also discussed.
Resumo:
The selenium analogue of antithyroid drug methimazole (MSeI) reacts with molecular bromine to produce two different types of novel complexes depending upon the molar ratio of MSeI to Br-2 in the reaction medium: Dicationic diselenide complex with two Br- ions as counterions is produced in the reaction of MSeI with 0.5 equiv of Br-2 (MSeI/Br-2, 1.0:0.5), whereas a stable 10-Se-3 hypervalent ``T-shaped'' complex featuring a linear Br-Se-Br moiety was produced when MSeI was treated with Br-2 in an equimolar ratio (MSeI/Br-2, 1.0:1.0). A substitution at the free N-H group in MSeI alters its reactivity toward iodine/bromine. For example, the N,N-disubstituted selones exclusively produce the corresponding 10-Se-3 hypervalent ``T-shaped'' complexes in the reaction with I-2. In the presence of the lectoperoxidase/H2O2/I- system, N,N-dimethylimidazole-2-selone produces the corresponding dicationic diselenide with two I- counterions as the final metabolite. The formation of ionic species in these reactions is confirmed by single crystal X-ray diffraction studies and in some cases by Fourier transform-Raman spectroscopic investigations.
Resumo:
In this article, we present a novel application of a quantum clustering (QC) technique to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. We further portray each conformational population in terms of dynamically stable network parameters which beautifully capture the ligand induced variations in the ensemble in atomistic detail. The conformational populations thus identified by the QC method and verified by network parameters are evaluated for different ligand bound states of the protein pyrrolysyl-tRNA synthetase (DhPylRS) from D. hafniense. The ligand/environment induced re-distribution of protein conformational ensembles forms the basis for understanding several important biological phenomena such as allostery and enzyme catalysis. The atomistic level characterization of each population in the conformational ensemble in terms of the re-orchestrated networks of amino acids is a challenging problem, especially when the changes are minimal at the backbone level. Here we demonstrate that the QC method is sensitive to such subtle changes and is able to cluster MD snapshots which are similar at the side-chain interaction level. Although we have applied these methods on simulation trajectories of a modest time scale (20 ns each), we emphasize that our methodology provides a general approach towards an objective clustering of large-scale MD simulation data and may be applied to probe multistate equilibria at higher time scales, and to problems related to protein folding for any protein or protein-protein/RNA/DNA complex of interest with a known structure.
Resumo:
It is well known that water molecules play an indispensable role in the structure and function of biological macromolecules. The water-mediated ionic interactions between the charged residues provide stability and plasticity and in turn address the function of the protein structures. Thus, this study specifically addresses the number of possible water-mediated ionic interactions, their occurrence, distribution and nature found in 90% non-redundant protein chains. Further, it provides a statistical report of different charged residue pairs that are mediated by surface or buried water molecules to form the interactions. Also, it discusses its contributions in stabilizing various secondary structural elements of the protein. Thus, the present study shows the ubiquitous nature of the interactions that imparts plasticity and flexibility to a protein molecule.
Resumo:
A series of halogen-substituted benzanilides have been synthesized and characterized, and crystallization studies directed toward generation of polymorphs have been performed to delineate the importance of interactions involving halogens. The effect of halogen substitution on the molecular conformation and supramolecular packing has been investigated. The N-H center dot center dot center dot O H-bond is a key structure-directing element acting in conjunction with C-H center dot center dot center dot O and C-H center dot center dot center dot pi interactions. In addition, it is of importance to note that organic fluorine prefers Type I F center dot center dot center dot F contacts, whereas Cl, Br, and I prefer Type II contacts. Hetero-halogen center dot center dot center dot halogen interactions on the other hand are predominately of Type II geometry, and this is due to the greater polarizability of the electron density associated with the heavier halogens. It is of importance to evaluate the contributing role of these interactions in crystal structure packing and the co-operativity associated with such interactions in the solid state.
Resumo:
The statistical thermodynamics of adsorption in caged zeolites is developed by treating the zeolite as an ensemble of M identical cages or subsystems. Within each cage adsorption is assumed to occur onto a lattice of n identical sites. Expressions for the average occupancy per cage are obtained by minimizing the Helmholtz free energy in the canonical ensemble subject to the constraints of constant M and constant number of adsorbates N. Adsorbate-adsorbate interactions in the Brag-Williams or mean field approximation are treated in two ways. The local mean field approximation (LMFA) is based on the local cage occupancy and the global mean field approximation (GMFA) is based on the average coverage of the ensemble. The GMFA is shown to be equivalent in formulation to treating the zeolite as a collection of interacting single site subsystems. In contrast, the treatment in the LMFA retains the description of the zeolite as an ensemble of identical cages, whose thermodynamic properties are conveniently derived in the grand canonical ensemble. For a z coordinated lattice within the zeolite cage, with epsilon(aa) as the adsorbate-adsorbate interaction parameter, the comparisons for different values of epsilon(aa)(*)=epsilon(aa)z/2kT, and number of sites per cage, n, illustrate that for -1
Resumo:
A decapeptide Boc-L-Ala-(DeltaPhe)(4)-L-Ala-(DeltaPhe)(3)-Gly-OMe (Peptide I) was synthesized to study the preferred screw sense of consecutive alpha,beta-dehydrophenylalanine (DeltaPhe) residues. Crystallographic and CD studies suggest that, despite the presence of two L-Ala residues in the sequence, the decapeptide does not have a preferred screw sense. The peptide crystallizes with two conformers per asymmetric unit, one of them a slightly distorted right-handed 3(10)-helix (X) and the other a left-handed 3(10)-helix (Y) with X and Y being antiparallel to each other. An unanticipated and interesting observation is that in the solid state, the two shape-complement molecules self-assemble and interact with an extensive network of C-H...O hydrogen bonds and pi-pi interactions, directed laterally to the helix axis with amazing regularity. Here, we present an atomic resolution picture of the weak interaction mediated mutual recognition of two secondary structural elements and its possible implication in understanding the specific folding of the hydrophobic core of globular proteins and exploitation in future work on de novo design.
Resumo:
While bonding between d(10) atoms and ions in molecular systems has been well studied, less attention has been paid to interactions between such seemingly closed shell species in extended inorganic solids. In this contribution, we present visualizations of the electronic structures of the delafossites ABO(2) (A = Cu, Ag, Au) with particular emphasis on the nature of d(10)-d(10) interactions in the close packed plane of the coinage metal ion. We find that on going from Cu to Ag to Au, the extent of bonding between A and A increases. However, the structures (in terms of distances) of these compounds are largely determined by the strongly ionic 13,11 0 interaction and for the larger B ions Sc, In and Y, the A atoms are sufficiently well-separated that A-A bonding is almost negligible. We also analyze some interesting differences between Ag and Au, including the larger A-O covalency of the Au. The trends in electronic structure suggest that the Ag and Au compounds are not good candidate transparent conducting oxides. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
The interaction of two interfacial arc cracks around a circular elastic inclusion embedded in an elastic matrix is examined. New results for stress intensity factors for a pair of interacting cracks are derived for a concentrated force acting in the matrix. For verifying the point load solutions, stress intensity factors under uniform loading are obtained by superposing point force results. For achieving this objective, a general method for generating desired stress fields inside a test region using point loads is described. The energetics of two interacting interfacial arc cracks is discussed in order to shed more light on the debonding of hard or soft inclusions from the matrix. The analysis based on complex variables is developed in a general way to handle the interactions of multiple interfacial arc cracks/straight cracks.
Resumo:
Structural and electronic properties of C-H center dot center dot center dot O contacts in compounds containing a formyl group are investigated from the perspective of both hydrogen bonding and dipole-dipole interactions, in a systematic and graded approach. The effects of a-substitution and self-association on the nature of the formyl H-atom are studied with the NBO and AIM methodologies. The relative dipole-dipole contributions in formyl C-H center dot center dot center dot O interactions are obtained for aldehyde dimers. The stabilities and energies of aldehyde clusters (dimer through octamer) have been examined computationally. Such studies have an implication in crystallization mechanisms. Experimental X-ray crystal structures of formaldehyde, acrolein and N-methylformamide have been determined in order to ascertain the role of C-H center dot center dot center dot O interactions in the crystal packing of formyl compounds.
Resumo:
We report our studies of the linear and nonlinear rheology of aqueous solutions of the surfactant cetyl trimethylammonium tosylate (CTAT) with varying amounts of sodium chloride (NaCl). The CTAT concentration is fixed at 42 mM, and the salt concentration is varied between 0 and 120 mM. On increasing the salt (NaCl) concentration, we see three distinct regimes in the zero-shear viscosity and the high-frequency plateau modulus data. In regime 1, the zero-shear viscosity shows a weak increase with salt concentration due to enhanced micellar growth. The decrease in the zero-shear viscosities with salt concentration in regimes II and III can be explained in terms of intermicellar branching. The most intriguing feature of our data, however, is the anomalous behavior of the high-frequency plateau modulus in regime II (0.12 less than or equal to [NaCl]/[CTAT] less than or equal to 1.42). In this regime, the plateau modulus increases with an increase in NaCl concentration. This is highly interesting, since the correlation length of concentration fluctuations and hence the plateau modulus G(0) are not expected to change appreciably in the semidilute regime. We propose to explain the changes in regime II in terms of a possible unbinding of the organic counterions (tosylate) from the CTA(+) surfaces on the addition of NaCl. In the nonlinear flow curves of the samples with high salt content, significant deviations from the predictions of the Giesekus model for entangled micelles are observed.
Resumo:
Novel gold nanoparticles bearing cationic single-chain, double-chain, and cholesterol based amphiphilic units have been synthesized. These nanoparticles represent size-stable entities in which various cationic lipids have been immobilized through their thiol group onto the gold nanoparticle core. The resulting colloids have been characterized by UV-vis, (1)H NMR, FT-IR spectroscopy, and transmission electron microscopy. The average size of the resultant nanoparticles could be controlled by the relative bulkiness of the capping agent. Thus, the average diameters of the nanoparticles formed from the cationic single-chain, double-chain, and cholesterol based thiolate-coated materials were 5.9,2.9, and 2.04 nm, respectively. We also examined the interaction of these cationic gold nanoparticles with vesicular membranes generated from dipalmitoylphosphatidylcholine (DPPC) lipid suspensions. Nanoparticle doped DPPC vesicular suspensions displayed a characteristic surface plasmon band in their UV-vis spectra. Inclusion of nanoparticles in vesicular suspensions led to increases in the aggregate diameters, as evidenced from dynamic light scattering. Differential scanning calorimetric examination indicated that incorporation of single-chain, double-chain, and cholesteryl-linked cationic nanoparticles exert variable effects on the DPPC melting transitions. While increased doping of single-chain nanoparticles in DPPC resulted in the phases that melt at higher temperatures, inclusion of an incremental amount of double-chain nanoparticles caused the lowering of the melting temperature of DPPC. On the other hand, the cationic cholesteryl nanoparticle interacted with DPPC in membranes in a manner somewhat analogous to that of cholesterol itself and caused broadening of the DPPC melting transition.