288 resultados para Steady-state simulations
Resumo:
Uniform field steady-state ionization currents were measured in dry air as a function of N at constant E/N (E is the electric field strength and N the gas number density) and constant electrode separation d for 14·13 × 10-16 less-than-or-eq, slant E/N less-than-or-eq, slant 282·5 × 10-16 V cm2. Uniform field sparking potentials were also measured for Nd range 1·24 × 1016 less-than-or-eq, slant Nd less-than-or-eq, slant 245 × 1016 cm-2. The ratio of the Townsend primary ionization coefficient α to N, α/N, was found to depend on E/N only. The secondary coefficients were also evaluated for aluminium and gold-plated electrodes for the above range of E/N. Measurements of the sparking potentials showed that Paschen's law is not obeyed in air at values of Nd near and below the Paschen minimum.
Resumo:
The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The nonlinear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0 < t* < 1 and reach the steady-state values for t* >= 4. (C) 2010 Published by Elsevier Ltd.
Resumo:
A novel ZVS auxiliary switch commutated variation for all DGDC converter topologies has been proposed in 2006. With proper designation of the circuit variables (throw current I and the pole voltage V), all these converters are seen to be governed by an identical set of equations. With idealized switches, the steady-state performance is obtainable in an analytical form. The conversion ratio of the converter topologies is obtained. A generalized equivalent circuit emerges for all these converters from the steady-state conversion ratio. It also provides a dynamic model as well. With these generalized steady-state equivalent circuits, small signal analysis of these converters may be carried out readily. It enables one to use the familiar state space averaged results of the standard PWM DGDC converters for the resonant counterparts. Th dc and ac models reveals that dc and low frequency behaviour of the proposed family of converters is similiar to that of its PWM parent
Resumo:
An algorithm for optimal allocation of reactive power in AC/DC system using FACTs devices, with an objective of improving the voltage profile and also voltage stability of the system has been presented. The technique attempts to utilize fully the reactive power sources in the system to improve the voltage stability and profile as well as meeting the reactive power requirements at the AC-DC terminals to facilitate the smooth operation of DC links. The method involves successive solution of steady-state power flows and optimization of reactive power control variables with Unified Power Flow Controller (UPFC) using linear programming technique. The proposed method has been tested on a real life equivalent 96-bus AC and a two terminal DC system under normal and contingency conditions.
Resumo:
Switching frequency variation over a fundamental period is a major problem associated with hysteresis controller based VSI fed IM drives. This paper describes a novel concept of generating parabolic trajectories for current error space phasor for controlling the switching frequency variation in the hysteresis controller based two-level inverter fed IM drives. A generalized algorithm is developed to determine unique set of parabolic trajectories for different speeds of operation for any given IM load. Proposed hysteresis controller provides the switching frequency spectrum of inverter output voltage, similar to that of the constant switching frequency VC-SVPWM based IM drive. The scheme is extensively simulated and experimentally verified on a 3.7 kW IM drive for steady state and transient performance.
Resumo:
A simplified two-temperature model is presented for the vibrational energy levels of the N2O and N2 molecules of an N2O-N2-He gasdynamic laser (GDL), and the governing equations for the unsteady flow of the gas mixture in a convergent-divergent contour nozzle are solved using a time-dependent numerical technique. Final steady-state distributions are obtained for vibrational temperatures, population inversion, and the small-signal laser gain along the nozzle. It is demonstrated that, for plenum temperatures lower than 1200 K, an N2O GDL such as the present is more efficient than a CO2 GDL in identical operating conditions
Resumo:
Polymeric adhesive layers are employed for bonding two components in a wide variety of technological applications, It has been observed that, unlike in metals, the yield behavior of polymers is affected by the state of hydrostatic stress. In this work, the effect of pressure sensitivity of yielding and layer thickness on quasistatic interfacial crack growth in a ductile adhesive layer is investigated. To this end, finite deformation, finite element analyses of a cracked sandwiched layer are carried out under plane strain, small-scale yielding conditions for a wide range of mode mixities. The Drucker-Prager constitutive equations are employed to represent the behavior of the layer. Crack propagation is simulated through a cohesive zone model, in which the interface is assumed to follow a prescribed traction-separation law. The results show that for a given mode mixity, the steady state Fracture toughness [K](ss) is enhanced as the degree of pressure sensitivity increases. Further, for a given level of pressure sensitivity, [K](ss) increases steeply as mode Il loading is approached. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
An analysis is performed to study the unsteady laminar incompressible boundary-layer flow of an electrically conducting fluid in a cone due to a point sink with an applied magnetic field. The unsteadiness in the flow is considered for two types of motion, viz. the motion arising due to the free stream velocity varying continuously with time and the transient motion occurring due to an impulsive change either in the strength of the point sink or in the wall temperature. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. The magnetic field increases the skin friction but reduces heat transfer. The heat transfer and temperature field are strongly influenced by the viscous dissipation and Prandtl number. The velocity field is more affected at the early stage of the transient motion, caused by an impulsive change in the strength of the point sink, as compared to the temperature field. When the transient motion is caused by a sudden change in the wall temperature, both skin friction and heat transfer take more time to reach a new steady state. The transient nature of the flow and heat transfer is active for a short time in the case of suction and for a long time in the case of injection. The viscous dissipation prolongs the transient behavior of the flow.
Resumo:
Slag foaming under dynamic conditions has been studied in laboratory scale to examine the influence of properties commonly used to describe the foaminess and foam stability of slags under steady-state conditions. Synthetically produced slags with compositions relevant to tool steel and stainless steel production were studied through X-ray equipment in measurements simulating the dynamic conditions found in real processes. It is found that the dynamic systems display a more complex behavior than systems Under steady state. Traditional theories for foaming do not seem to be valid for slag foaming under dynamic conditions. The foam displays a fluctuating behavior, which the presently available models are not able to take into account. The concept of a foaming index does not seem to be applicable, resulting in the need for alternative models.
Resumo:
The creep behaviour of a creep-resistant AE42 magnesium alloy has been examined in the temperature range of 150 to 240 degrees C at the stress levels ranging from 40 to 120 MPa using impression creep technique. A normal creep behaviour, i.e., strain rate decreasing with strain and then reaching a steady state, is observed at all the temperatures and stresses employed The stress exponent varies from 5.1 to 5.7 and the apparent activation energy varies from 130 to 140 kJ/mol, which suggests the high temperature climb of dislocation controlled by lattice self-diffusion being the dominant creep mechanism in the stress and temperature range employed The creep behaviour of the AE42 alloy has also been compared with its composites reinforced with Saffil short fibres and SiC particles in four combinations. All the composites exhibited a lower creep rate than the monolithic AE42 alloy tested at the same temperature and stress levels and the decrease in creep rate was greater in the longitudinal direction than in the transverse direction, as expected. All the hybrid composites, i.e., the composites reinforced with a combination of Saffil short fibres and SiC particles, exhibited creep rates comparable to the composite reinforced with 20% Saffil short fibres alone at all the temperature and stress levels employed, which is beneficial from the commercial point of view.
Resumo:
Friction force generated in lubricated cutting of steel is experimentally estimated by recording the tangential force experienced by the spherical face of a pin rubbing against a freshly cut surface. The pin and the cutting tool are both submerged in the lubricant and the pin is situated on the cut-track to record the force. The recording shows an instantaneous achievement of a peak in the force curve followed by a decline in time to a steady state value. The peak and not the steady state friction was found to be sensitive to the structure of the hydrocarbon and addition of additive to the oil. The configuration was designed and tested to demonstrate the influence of a reaction film which develops during cutting, on cutting tool friction. Given the strong correlation between the peak friction and the existence of a tribofilm in the cutting zone, the configuration is used to determine the lower limit of a cutting speed regime, which marks the initiation of lubricant starvation, in cutting of steel using an emulsion as a cutting fluid. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper is concerned with a study of an operator split scheme and unsplit scheme for the computation of adiabatic freely propagating one-dimensional premixed flames. The study uses unsteady method for both split and unsplit schemes employing implicit chemistry and explicit diffusion, a combination which is stable and convergent. Solution scheme is not sensitive to the initial starting estimate and provides steady state even with straight line profiles (far from steady state) in small number of time steps. Two systems H2-Air and H2-NO (involving complex nitrogen chemistry) are considered in presentinvestigation. Careful comparison shows that the operator split approach is slightly superior than the unsplit when chemistry becomes complex. Comparison of computational times with those of existing steady and unsteady methods seems to suggest that the method employing implicit-explicit algorithm is very efficient and robust.
Resumo:
The problems in measuring thermal emittance by steady?state calorimetric technique have been analyzed. A few suggestions to make it more accurate, simple, and rapid have been discussed and results are presented.
Resumo:
Condensation from the vapor state is an important technique for the preparation of nanopowders. Levitational gas condensation is one such technique that has a unique ability of attaining steady state. Here, we present the results of applying this technique to an iron-copper alloy (96Fe-4Cu). A qualitative model of the process is proposed to understand the process and the characteristics of resultant powder. A phase diagram of the alloy system in the liquid-vapor region was calculated to help understand the course of condensation, especially partitioning and coring during processing. The phase diagram could not explain coring in view of the simultaneous occurrence of solidification and the fast homogenization through diffusion in the nanoparticles; however, it could predict the very low levels of copper observed in the levitated drop. The enrichment of copper observed near the surface of the powder was considered to be a manifestation of the lower surface energy of copper compared with that of iron. Heat transfer calculations indicated that most condensed particles can undergo solidification even when they are still in the proximity of the levitated drop. It helped us to predict the temperature and the cooling rate of the powder particles as they move away from the levitated drop. The particles formed by the process seem to be single domain, single crystals that are magnetic in nature. They, thus, can agglomerate by forming a chain-like structure, which manifests as a three-dimensional network enclosing a large unoccupied space, as noticed in scanning electron microscopy and transmission electron microscopy studies. This also explains the observed low packing density of the nanopowders.
Resumo:
A generalised formulation of the mathematical model developed for the analysis of transients in a canal network, under subcritical flow, with any realistic combination of control structures and their multiple operations, has been presented. The model accounts for a large variety of control structures such as weirs, gates, notches etc. discharging under different conditions, namely submerged and unsubmerged. A numerical scheme to compute and approximate steady state flow condition as the initial condition has also been presented. The model can handle complex situations that may arise from multiple gate operations. This has been demonstrated with a problem wherein the boundary conditions change from a gate discharge equation to an energy equation and back to a gate discharge equation. In such a situation the wave strikes a fixed gate and leads to large and rapid fluctuations in both discharge and depth.