418 resultados para Spin order
Resumo:
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, pointlike impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potentials. In the regime of small bias and low pumping frequency, both the dc and ac components of the current have power-law dependences on the bias and pumping frequencies with an exponent 2K-1 for spinless electrons, where K is the interaction parameter. For K < 1/2, the current grows large for special values of the bias. For noninteracting electrons with K=1, our results agree with those obtained using Floquet scattering theory for Dirac fermions. We also discuss the cases of extended impurities and of spin-1/2 electrons.
Resumo:
A modified form of Green's integral theorem is employed to derive the energy identity in any water wave diffraction problem in a single-layer fluid for free-surface boundary condition with higher-order derivatives. For a two-layer fluid with free-surface boundary condition involving higher-order derivatives, two forms of energy identities involving transmission and reflection coefficients for any wave diffraction problem are also derived here by the same method. Based on this modified Green's theorem, hydrodynamic relations such as the energy-conservation principle and modified Haskind–Hanaoka relation are derived for radiation and diffraction problems in a single as well as two-layer fluid.
Resumo:
We have measured near normal incidence far-infrared (FIR) reflectivity spectra of a single crystal of TbMnO3 from 10 K to 300 K in the spectral range of 50 cm(-1)-700 cm(-1). Fifteen transverse optic (TO) and longitudinal optic (LO) modes are identified in the imaginary part of the dielectric function epsilon(2)(omega) and energy loss function Im(-1/epsilon(omega)), respectively. Some of the observed phonon modes show anomalous softening below the magnetic transition temperature T-N (similar to 46 K). We attribute this anomalous softening to the spin-phonon coupling caused by phonon modulation of the superexchange integral between the Mn3+ spins. The effective charge of oxygen (Z(O)) calculated using the measured LO-TO splitting increases below TN.
Resumo:
Temperature-dependent Raman spectra of TbMnO3 from 5 to 300 K in the spectral range of 200-1525 cm(-1) show five first-order Raman allowed modes and two high frequency modes. The intensity ratio of the high frequency Raman band to the corresponding first-order Raman mode is nearly constant and high (similar to 0.6) at all temperatures, suggesting an orbiton-phonon mixed nature of the high frequency mode. One of the first-order phonon modes shows anomalous softening below T-N (similar to 46 K), suggesting a strong spin-phonon coupling.
Resumo:
We address the longstanding problem of recovering dynamical information from noisy acoustic emission signals arising from peeling of an adhesive tape subject to constant traction velocity. Using the phase space reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of correlation dimension as also a positive Lyapunov exponent in a midrange of traction velocities. The results are explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by clarifying its connection to stick-slip dynamics.
Resumo:
The ground state and low energy excitations of the SU(m|n) supersymmetric Haldane–Shastry spin chain are analyzed. In the thermodynamic limit, it is found that the ground state degeneracy is finite only for the SU(m|0) and SU(m|1) spin chains, while the dispersion relation for the low energy and low momentum excitations is linear for all values of m and n. We show that the low energy excitations of the SU(m|1) spin chain are described by a conformal field theory of m non-interacting Dirac fermions which have only positive energies; the central charge of this theory is m/2. Finally, for ngreater-or-equal, slanted1, the partition functions of the SU(m|n) Haldane–Shastry spin chain and the SU(m|n) Polychronakos spin chain are shown to be related in a simple way in the thermodynamic limit at low temperatures.
Resumo:
The recent discovery of spin ice is a spectacular example of the noncoplanar spin arrangements that can arise in the pyrochlore A2B2O7 structure. We present magnetic and thermodynamic studies on the metallic ferromagnet pyrochlore Sm2Mo2O7. Our studies, carried out on oriented crystals, suggest that the Sm spins have an ordered spin-ice ground state below about T*=15 K. The temperature and field evolution of the ordered spin-ice state are governed by an antiferromagnetic coupling between the Sm and Mo spins. We propose that as a consequence of a robust feature of this coupling, the tetrahedra aligned with the external field adopt a one-in, three-out spin structure as opposed to the three-in, one-out structure in dipolar spin ices, as the field exceeds a critical value.
Resumo:
Semiconductor Bloch equations, which microscopically describe the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. These equations have been recently extended to include the spin degree of freedom and used to explain spin dynamics in the coherent regime. In the quasiequilibrium limit, one solves the Bethe-Salpeter equation in a two-band model to describe how optical absorption is affected by Coulomb interactions within a spin unpolarized plasma of arbitrary density. In this work, we modified the solution of the Bethe-Salpeter equation to include spin polarization and light holes in a three-band model, which allowed us to account for spin-polarized versions of many-body effects in absorption. The calculated absorption reproduced the spin-dependent, density-dependent, and spectral trends observed in bulk GaAs at room temperature, in a recent pump-probe experiment with circularly polarized light. Hence, our results may be useful in the microscopic modeling of density-dependent optical nonlinearities due to spin-polarized carriers in semiconductors.
Resumo:
We report the fabrication of La0.7Ca0.3MnO3 nanotubes (LCMONTs) with a diameter of about 200 nm, by a modified sol-gel method utilizing nanochannel alumina templates. High resolution transmission electron microscopy confirmed that the obtained LCMONTs are made up of nanoparticles (8-12 nm), which are randomly aligned in the wall of the nanotubes. The strong irreversibility between zero field cooling (ZFC) and field cooling (FC) magnetization curves as well as a cusplike peak in the ZFC curve gives strong support for surface spin glass behavior.
Resumo:
The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes.
Resumo:
Apart from their intrinsic physical interest, spin-polarized many-body effects are expected to be important to the working of spintronic devices. A vast literature exists on the effects of a spin-unpolarized electron-hole plasma on the optical properties of a semiconductor. Here, we include the spin degree of freedom to model optical absorption of circularly polarized light by spin-polarized bulk GaAs. Our model is easy to implement and does not require elaborate numerics, since it is based on the closed-form analytical pair-equation formula that is valid in 3d. The efficacy of our approach is demonstrated by a comparison with recent experimental data.
Resumo:
We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydro-dynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number Pr-M and the magnetic Reynolds number Re-M. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (Pr-M(-1), Re-M) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
We report interesting anomalies in the temperature dependent Raman spectra of FeSe0.82 measured from 3 K to 300 K in the spectral range from 60 to 1800 cm(-1) and determine their origin using complementary first-principles density functional calculations. A phonon mode near 100 cm-1 exhibits a sharp increase by similar to 5% in the frequency below a temperature T-s (similar to 100 K) attributed to strong spin-phonon coupling and onset of short-range antiferromagnetic order. In addition, two high frequency modes are observed at 1350 cm-1 and 1600 cm-1, attributed to electronic Raman scattering from (x(2)-y(2)) to xz/yz d-orbitals of Fe. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.