226 resultados para Spectral dispersion
Resumo:
Accurate system planning and performance evaluation requires knowledge of the joint impact of scheduling, interference, and fading. However, current analyses either require costly numerical simulations or make simplifying assumptions that limit the applicability of the results. In this paper, we derive analytical expressions for the spectral efficiency of cellular systems that use either the channel-unaware but fair round robin scheduler or the greedy, channel-aware but unfair maximum signal to interference ratio scheduler. As is the case in real deployments, non-identical co-channel interference at each user, both Rayleigh fading and lognormal shadowing, and limited modulation constellation sizes are accounted for in the analysis. We show that using a simple moment generating function-based lognormal approximation technique and an accurate Gaussian-Q function approximation leads to results that match simulations well. These results are more accurate than erstwhile results that instead used the moment-matching Fenton-Wilkinson approximation method and bounds on the Q function. The spectral efficiency of cellular systems is strongly influenced by the channel scheduler and the small constellation size that is typically used in third generation cellular systems.
Resumo:
TiO2 thin films were prepared by sol gel method. The structural investigations performed by means of X- ray diffraction (XRD) technique, Scanning electronic microscopy (SEM) showed the shape structure at T=600°C. The optical constants of the deposited film were obtained from the analysis of the experimental recorded transmittance spectral data over the wavelengths range 200-3000 nm. The values of some important parameters (refractive index n, dielectric constant ε ∞ and thickness d), and the third order optical nonlinear susceptibility χ(3) of TiO2 film are determined from these spectra. It has been found that the dispersion data obey the single oscillator relation of the Wemple-DiDomenico model, from which the dispersion parameters and high – frequency dielectric constant were determined. The estimation of the corresponding band gap Eg , χ (3) and ε ∞ are 2.57 eV, 0.021 × 10-10 esu and 5.20,respectively.
Resumo:
We present spectroscopic ellipsometry measurements on thin films of polymer nanocomposites consisting of gold nanoparticles embedded in poly(styrene). The temperature dependence of thickness variation is used to estimate the glass transition temperature, T(g). In these thin films we find a significant dependence of T(g) on the nature of dispersion of the embedded nanoparticles. Our work thus highlights the crucial role played by the particle polymer interface morphology in determining the glass transition in particular and thermo-mechanical properties of such nanocomposite films.
Resumo:
In this work, an attempt has been made to evaluate the spatial variation of peak horizontal acceleration (PHA) and spectral acceleration (SA) values at rock level for south India based on the probabilistic seismic hazard analysis (PSHA). These values were estimated by considering the uncertainties involved in magnitude, hypocentral distance and attenuation of seismic waves. Different models were used for the hazard evaluation, and they were combined together using a logic tree approach. For evaluating the seismic hazard, the study area was divided into small grids of size 0.1A degrees A xA 0.1A degrees, and the hazard parameters were calculated at the centre of each of these grid cells by considering all the seismic sources within a radius of 300 km. Rock level PHA values and SA at 1 s corresponding to 10% probability of exceedance in 50 years were evaluated for all the grid points. Maps showing the spatial variation of rock level PHA values and SA at 1 s for the entire south India are presented in this paper. To compare the seismic hazard for some of the important cities, the seismic hazard curves and the uniform hazard response spectrum (UHRS) at rock level with 10% probability of exceedance in 50 years are also presented in this work.