134 resultados para Special Employment Center
Resumo:
In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation-and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH2, CF3, and COOH substituents) molecules paired with NH3 (referred as ACl:NH3 complex): these complexes exhibit halogen bonds. To the best of our knowledge, this is the first report on purely electron correlation-and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31+G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl center dot center dot center dot NH3 complex, the hole is predicted to migrate from the NH3-end to the ClCN-end of the NCCl center dot center dot center dot NH3 complex in approximately 0.5 fs on the D-0 cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H2NCl:NH3, F3CCl:NH3, and HOOCCl:NH3, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH3 and HOCl:NH3 complexes do not exhibit any charge migration following vertical ionization to the D-0 cation state, pointing to interesting halogen bond strength-dependent charge migration. (C) 2015 AIP Publishing LLC.
Resumo:
Computational study of X-Ha <-C and C-Ha <-X hydrogen bonds in n-alkane-HX complexes (X =F,OH, alkane =propane, butane, pentane) has been carried out in this work. Ab initio and density functional theories were used for this study. For n-alkane-H2O complexes both Oa <-H-C and O-Ha <-C hydrogen bonded complex have been found, while for n-alkane-HF complexes, our attempt to optimize Fa <-H-C H-bond was not successful. Like most of the hydrogen bonded systems, strong correlation between binding energy and stretching frequency of H-F and O-H stretching mode was observed. The values of electron density and Laplacian of electron density are within the accepted range for hydrogen bonds. In all these cases, X-Ha <-C hydrogen bonds are found to be stronger than C-Ha <-X hydrogen bonds.
Resumo:
Experimental charge density analysis combined with the quantum crystallographic technique of X-ray wavefunction refinement (XWR) provides quantitative insights into the intra-and intermolecular interactions formed by acetazolamide, a diuretic drug. Firstly, the analysis of charge density topology at the intermolecular level shows the presence of exceptionally strong interaction motifs such as a DDAA-AADD (D-donor, A-acceptor) type quadruple hydrogen bond motif and a sulfonamide dimer synthon. The nature and strength of intra-molecular S center dot center dot center dot O chalcogen bonding have been characterized using descriptors from the multipole model (MM) and XWR. Although pure geometrical criteria suggest the possibility of two intra-molecular S center dot center dot center dot O chalcogen bonded ring motifs, only one of them satisfies the ``orbital geometry'' so as to exhibit an interaction in terms of an electron density bond path and a bond critical point. The presence of `s-holes' on the sulfur atom leading to the S center dot center dot center dot O chalcogen bond has been visualized on the electrostatic potential surface and Laplacian isosurfaces close to the `reactive surface'. The electron localizability indicator (ELI) and Roby bond orders derived from the `experimental wave function' provide insights into the nature of S center dot center dot center dot O chalcogen bonding.
Resumo:
Modular chiral I3-organochalcogeno amines, ArYCH2CH(R)NH2 (4a-4g) where R = Me, Bz, Ph; and ArY = PhS, BzSe and 4-MeOC6H4Te respectively have been synthesized and characterized. Compounds 4a-4g were synthesized (Method II) from chiral aminoalkyl 13-methanesulfonate hydrochlorides, MsOCH2CH(R)NH3+ center dot Cl- (2a-2c) through nucleophilic displacement of MsO- with organochalcogenolate (ArY-). In another attempt (Method I) chiral beta-organotelluro amines (4a-4c) were prepared by deprotection of chiral N-boc I3-organotelluro amides, 4-MeOC6H4TeCH2CH(R)NH-Boc (3a-3c), which in turn, 13,-,1 were made from chiral N-boc 13-methanesulfonate amides (la-lc) and ArTeNa. 1H, and FTIR spectra of all the compounds (3a-3c and 4a-4g) were characteristic. The composition of 3a-3c was determined by elemental analysis. The a]TD values of 3b-3c and 4a-4g were determined. The single crystal structures of (S)-2b and (R)-2c were determined by X-Ray diffraction studies. Both (S)-2b and (R)2c were crystallized in orthorhombic system and the Flack parameter x was found 0.08(12) and 0.00(2) respectively. The crystal of (S)-2b contain two asymmetric units with gauche (A) and staggered (B) conformations. There are NH Cl-, NH-O and CH-O intra and intermolecular secondary interactions in (S)-2b and (R)-2c resulting in supramolecular structures. (C) 2015 Elsevier By. All rights reserved.
Resumo:
This paper considers decentralized spectrum sensing, i.e., detection of occupancy of the primary users' spectrum by a set of Cognitive Radio (CR) nodes, under a Bayesian set-up. The nodes use energy detection to make their individual decisions, which are combined at a Fusion Center (FC) using the K-out-of-N fusion rule. The channel from the primary transmitter to the CR nodes is assumed to undergo fading, while that from the nodes to the FC is assumed to be error-free. In this scenario, a novel concept termed as the Error Exponent with a Confidence Level (EECL) is introduced to evaluate and compare the performance of different detection schemes. Expressions for the EECL under general fading conditions are derived. As a special case, it is shown that the conventional error exponent both at individual sensors, and at the FC is zero. Further, closed-form lower bounds on the EECL are derived under Rayleigh fading and lognormal shadowing. As an example application, it answers the question of whether to use pilot-signal based narrowband sensing, where the signal undergoes Rayleigh fading, or to sense over the entire bandwidth of a wideband signal, where the signal undergoes lognormal shadowing. Theoretical results are validated using Monte Carlo simulations. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Non-covalent halogen-bonding interactions between n cloud of acetylene (C2H2) and chlorine atom of carbon tetrachloride (CCl4) have been investigated using matrix isolation infrared spectroscopy and quantum chemical computations. The structure and the energies of the 1:1 C2H2-CCl4 adducts were computed at the B3LYP, MP2 and M05-2X levels of theory using 6-311++G(d,p) basis set. The computations indicated two minima for the 1:1 C2H2-CCl4 adducts; with the C-Cl center dot center dot center dot pi adduct being the global minimum, where pi cloud of C2H2 is the electron donor. The second minimum corresponded to a C-H...Cl adduct, in which C2H2 is the proton donor. The interaction energies for the adducts A and B were found to be nearly identical. Experimentally, both C-Cl center dot center dot center dot pi and C-H center dot center dot center dot Cl adducts were generated in Ar and N2 matrixes and characterized using infrared spectroscopy. This is the first report on halogen bonded adduct, stabilized through C-Cl center dot center dot center dot pi interaction being identified at low temperatures using matrix isolation infrared spectroscopy. Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were performed to support the experimental results. The structures of 2:1 ((C2H2)(2)-CCl4) and 1:2 (C2H2-(CCl4)(2)) multimers and their identification in the low temperature matrixes were also discussed. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a design methodology to stabilize collective circular motion of a group of N-identical agents moving at unit speed around individual circles of different radii and different centers. The collective circular motion studied in this paper is characterized by the clockwise rotation of all agents around a common circle of desired radius as well as center, which is fixed. Our interest is to achieve those collective circular motions in which the phases of the agents are arranged either in synchronized, in balanced or in splay formation. In synchronized formation, the agents and their centroid move in a common direction while in balanced formation, the movement of the agents ensures a fixed location of the centroid. The splay state is a special case of balanced formation, in which the phases are separated by multiples of 2 pi/N. We derive the feedback controls and prove the asymptotic stability of the desired collective circular motion by using Lyapunov theory and the LaSalle's Invariance principle.
Resumo:
Electrical conductivity and dielectric relaxation studies on SO4 (2-) doped modified molybdo-phosphate glasses have been carried out over a wide range of composition, temperature and frequency. The d.c. conductivities which have been measured by both digital electrometer (four-probe method) and impedance analyser are comparable. The relaxation phenomenon has been rationalized using electrical modulus formalism. The use of modulus representation in dielectric relaxation studies has inherent advantages viz., experimental errors arising from the contributions of electrode-electrolyte interface capacitances are minimized. The relaxation observed in the present study is non-Debye type. The activation energies for relaxation were determined using imaginary parts of electrical modulus peaks which were close to those of the d.c. conductivity implying the involvement of similar energy barriers in both the processes. The enhanced conductivity in these glasses can be attributed to the migration of Na+, in expanded structures due to the introduction of SO4 (2-) ions.